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ABSTRACT 

The transmission of two dimensional images over large 
distances from far ranging space probes has become an important 
factor in space exploratory research. A common requirement for 
such transmission systems is a large bandwidth, low noise interfer- 
ence communication link for pleasing reception. 

- 

c Standard communication sys tems transmit images a s  they a r e  
normally viewed by light sensing devices such a s  cameras ,  photo- 
sensitive emulsions, and the human eye. This dissertation presents 
the results of investigations into the feasibility of transmitting the 
Fourier transform of an image rather than the spatial domain repre-  
sentation. The motivations behind the study of image transmission 
in the Fourier domain a r e  threefold. F i r s t ,  the Fourier transform 
tends to compact the image energy in the Fourier domain such that 
large bandwidth reductions can be obtained. Second, noise energy 
introduced in the Fourier domain tends to spread over the entire 
retransformed image, and thus becomes less  offensive to the eye. 
Finally, image enhancement can be accomplished by using nonlinear 
quantization and coding techniques on the Fourier domain. 

In this dissertation a proof of the equality of entropy in the 
spatial and Fourier domains of an  image is derived. 
quantization methods which compensate f o r  the tremendous dynamic 
range of information in the Fourier domain a r e  developed. 
speed two dimensional Fourier transforming computer algorithm is 
designed, and experimental results a r e  obtained through a digital 
computer implementation of the Fourier coding communication 
s y s  tern. Experimental verification of the equal entropy concepts 
provided by information theoretic principles is presented. 

Adaptive 

A high 

A noise immunity coding technique is designed for the Fourier 
domain utilizing the concepts of e r r o r  correcting codes. Consider- 
ably better quality transmission over noisy channels is experienced 
with the Fourier coding technique a s  opposed to spatial domain 
techniques. 

Very large bandwidth reductions a r e  obtained by filtering in 
the Fourier domain. In addition a novel sequential image construc- 
tion communication sys tem is presented utilizing the bandwidth 
reduction potentialities of the Fourier domain. 
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Image enhancement and evaluation techniques a r e  presented. 
Correlated noise is removed from images by spatial filtering in the 
Fourier domain. The matched fi l ter ,  which maximizes the signal 
to noise ratiq for additive noise, is implemented as a tool for eval- 
uating pre-processed and pos t-processed images by indicating the 
degree of correlation between the two images. 

The results of this research  indicate that the Fourier coding 
of imgges is a feasible concept for image transmission. 
coding provides an inherent noise immunity and permits a significant 
bandwidth reduction without tolerable image degradation. 
Fourier dQrnain processing techniques can be utilized to remove 

Fourier 
% 

Finally, 

. 

image defects. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Motivation 

Television has become an  increasingly important means of 

communication in scientific , military, and commercial applications. 

Recently, particular emphasis has been placed on spacecraft explor- 

atory missions in which television pictures a r e  transmitted over 

great  distances. Irnportant problems in the transmission of tele- 

vision for such an  application a r e  the high bandwidth and low noise 

interference requirements for quality reception. 

Over the years many investigations have been made into the 

reduction of bandwidth in the transmission of video scenes [ll.  The 

investigations have often made use of the communication model 

depicted in figure 1-1 in which a video source is  quantized, coded, 

transmitted over a channel , and then decoded for reconstruction. 

Diverse quantizing, scanning, coding, and modulation schemes have 

been developed [ 1 1 .  These techniques have been restricted to 

processing in the spatial domain of an image or scene. The spatial 

domain is the two dimensional coordinate system associated with a 

scene a s  normally viewed by the eye or optical scanning device. 

1 
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Generally, results have not been favorable using spatial domain 

methods. 

The research  reported here  deals with the general communi- 

cation model of figure 1-2. 

problem is different from ear l ier  efforts and affords further insight 

The approach taken to the communication 

into the video bandwidth- transmission problem. Rather than inves ti- 

gating properties of a scene, characterized by a bounded positive 

real  two dimensional function, the properties of the two dimensional 

Fourier transform of the scene a r e  studied. This introduces the 

frequency domain of an image as that coordinate system which 

corresponds to the Fourier transform of the image. The question 

then a r i s e s  a s  to what properties, if any, of the frequency domain 

wi l l  allow for more  efficient video transmission in terms of noise 

immunity, bandwidth reduction, more  efficient coding, and improved 

quality recons true tion. 

The motivations behind the study of image transmission in the 

Fourier domain a r e  threefold. F i r s t ,  the Fourier transform, in 

general, tends to compact the image energy in the frequency domain 

such that more  efficient scanning can be implemented. 

energy introduced in the frequency domain spreads i ts  energy over 

the entire retransformed image thus becoming l e s s  offensive to the 

human eye. 

the transmission process by using nonlinear quantizing and coding 

Second, noise 

Finally, image enhancement can be accomplished during 
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schemes. 

1.2 Research Problem 

The problem presented for research consists of an analytic 

and experimental investigation of the feasibility of transmitting the 

Fourier domain of an image as a n  improvement to normal spatial 

domain transmission. 

involved with studying the properties of the Fourier  domain from 

an information theoretic viewpoint in order to derive necessary 

The analytic portion of the research is 

guidelines f o r  developing the communication techniques needed for 

successful transmission of that domain over a communication link. 

In addition, entropy concepts a r e  developed and density functions 

derived in order to construct quantization and coding rules for trans- 

mission. The experimental portion of the research is oriented 

toward the implementation of techniques suggested by analytic deri-  

vations. This task includes verification of equal bandwidth require- 

ments in both the spatial and Fourier  domains and implementation of 

quantization, noise immunity, and bandwidth reduction coding rules. 

The experimentation could have been performed by analog optical 

data processing. However, i t  w a s  felt that with the considerable 

flexibility and dynamic range of digital computers, the m o r e  success- 

ful results would be obtained from a completely digital experimental 

approach. A digital computer facility has been developed solely for 
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this research project. Required hardware modifications f 

processing have been made to the digital computer so that two 

dimensional displays a r e  possible. Additionally, a large software 

programming effort has been undertaken to develop the requisite 

programs for image processing, communication channel simulation, 

and receiver reconstruction simulation. 

effort is  based on the development of an efficient Fourier transform 

program without which the computer computation time would have 

been fa r  too extensive to initiate even the smallest  portion of experi- 

The experimental digital 

mental results presented here .  

1 . 3  Chapter Descriptions 

Chapter 1 consists of the introduction to this report, and 

broadly outlines the research problem and objectives of investigation. 

Chapter 2 presents a discussion of two dimensional Fourier 

transforms. 

dimensional high speed computer algorithm is derived. 

dimensional algorithm is incorporated into a two dimensional format, 

and experimental verification is presented in support of the validity 

of the computerized transformation. 

Discrete Fourier transforms a r e  defined and a one 

The one 

Chapter 3 analyzes the deterministic properties of the Fourier 

domain due to certain restrictions on the spatial domain. This 

chapter includes the study of symmetry, dynamic range, and 
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nonnegative-definite functions associated with the frequency domain. 

An entropy calculation is presented verifying that, from an  informa- 

tion theoretic viewpoint, the entropy or uncertainty of the spatial 

domain and frequency domain is identical. 

Chapter 4 develops two methods of quantitative image evalua- 

The f i rs t  is based on statistical parameters,  and the second is tion, 

based on a two dimensional matched filtering concept. 

results are  compared with the subjective viewing properties of the 

Experimental 

human eye. 

Chapter 5 includes a derivation of the 

of the spectral  components in the frequency 

f i r s t  and second moments 

domain. A probability 

density distribution is described whose variance changes a s  a function 

of frequency. This distribution forms the basis of a frequency adap- 

tive quantization law.  An expression for  minimum quantization noise 

is derived and results of experimental quantization rules a r e  pre- 

sented. These results substantiate the equal bandwidth requirements 

for both the spatial and Fourier domains. 

Chapter 6 presents results of investigations into the inherent 

noise immunity of Fourier  image coding. 

symmetric channel noise is discussed; and a coding technique is 

presented to obtain reasonably good quality images transmitted 

through a very noisy channel. In addition, techniques for correlated 

Specifically, binary 

noise removal by processing in the frequency domain a r e  discussed. 
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Chapter 7 incorporates the results of bandwidth reduction 

studies. A unique sequential image construction techn 

yields very large bandwidth reductions, is presented. 

backs a r e  indicated, especially in the application of spatial bandwidth 

reduc tion techniques to the frequency domain. 

$ 

Certain, coding 

schemes a r e  presented fo r  small  reduction factors,  and comparisons 

with spatial domain results a r e  made. 

Chapter 8 summarizes the results of the research and offers 

suggestions for future investigations. 

The appendices contain sections on hardware and software 

systems used in the research. 



CHAPTER 2 

FOURIER TRANSFORMS 

2 . 1  Two Dimensional Fourier  Transforms 

The two dimensional Fourier  transformation is a l inear opera- 

tor, and consequently lends itself to a linear systems analysis 

approach analogous to the time-frequency studies of the communica- 

tions engineer. However, rather than operating on a one dimensional 

causal time function, the two dimensional Fourier  transformation 

becomes the coupling operation between a non-causal two dimensional 

space domain and spatial frequency domain. 

frequency concepts a r e  not new. 

Two dimensional spatial 

They have been developed exten- 

sively by the optical engineer in studies of optical data processing 

systems [ 2 , 3 1 .  

The two dimensional Fourier  transform can be expressed 

ma thema tically as 

In this equation f(x,y) is a two dimensional function defined on a plane 

with coordinates (x,y), hereafter referred to as the space domain. 

The space domain may be assigned the physical dimension of length 

9 



along a reference axis. 

on a plane with coordinates (u,v), hereafter re fer red  to as the spatial 

F(u, v) is a two dimensional function defined 

frequency or  Fourier  domain, The axes dimensions of the frequency 

domain have units of cycles per unit length. 

dimensional Fourier transform of f(x,y) w i t b  respect to the Fourier 

kernel exp { i(uxfvy) ] . 

F(u,v), then, is the two 

2 .2  Optical Implementation 

In order to become familiar with the physical sppli 

to perceive the significance of the above two dimensional transform, 

a brief review of optical data processing schemes wi l l  be presented. 

Most optical processing systems a r e  linearly analyzed in light inten- 

sity, or amplitude and phase, depending on whether the optical 

elements a r e  illuminated with incoherent or coherent optical radia- 

tion, respectively. The case of coherent illumination is of particular 

interest. 

quencies can be explained with reference to figure 2-1, 

The concepts of coherent optical systems and spatial f re -  

A transpar- 

ency with transmittance f (x, y )  is illuminated by a coherent, collim- 

ated light beam s o  that the electric field amplitude of the light a t  the 

input plane is proportional to f(x,y). 

image of the transparency in the frequency plane. 

field amplitude, F(u ' ,v ' ) ,  in the frequency plane, a s  determined by 

the Kirchhoff integral of diffraction theory, is  given by the Fourier 

The spherical lens produces an  

The light electric 
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transform rela tion 

d b  

F(u ' ,v ' )  = 11 f(x,y) exp { (2.2) 
2 rri 

(u'x-tv'y)) dxdy 
c a  

where X is the wavelength of light illuminating the transparency and 

f is the focal length of the lens [ 4 ,  pg. 3791. 

written a s  

This relation can be 

d b  
F(u, v) = 1 f(x, y)  exp c i(ux+vy) '3 dxdy (2 .3 )  

c a  

a r e  called the spatial frequencies in 
2n u' 

and v = - where u = - X f  

the Fourier transform frequency plane. A second spherical lens, as 

shown in figure 2-1, performs a second Fourier transform to return 

to the space domain. The image is rotated 180° because each spher- 

Xf 

ical lens introduces a positive two dimensional kernel. This is 

mathematically expressed as 

(2.4) 

where 3 implies a two dimensional Fourier transform. 2 

In optical data processing systems the frequency content of a 

two dimensional signal, f(x,y),  may be modified by placing a trans- 

parency, H(u,v),  in the frequency plane of the function. The output, 
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@(-x, -y), of a second spherical lens, and therefore second Fourier 

transform, can be expressed as 

This physical system can be mathematically modeled by a two dimen- 

sional linear system analysis as illustrated in figure 2-2  where h(x,y) 

is the impulse response of the filter and is €qual to the Fourier trans- 

form of H(u,v). 

Fo r  a completely general two dimensional linear processing 

system, both complex (real  and imaginary) inputs and outputs must  

be readily processable. In fact, only under special circumstances 

w i l l  the output. of a Fourier transformation be entirely real. Unfor- 

tunately, the light sensing transducers employed in optical data pro- 

cessing systems a r e  only sensitive to energy or intensity rather than 

phase and amplitude. Consequently, it is difficult to implement and 

detect complex functions optically, although some methods to exist 

[ 5 1 .  An alternative to optical processing is found by incorporating 

the use of a digital computer for completely general two dimensional 

informa tion processing . 

2.3 Digital Fourier  Transforms 

A two dimensional digital Fourier transform may be repre-  

sented by the equation 
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The inversion formula associated with equation (2.6) is 

N-LN-1 1 2rr i 
f(x,y) = 6 C C F(u,v)  exp {-r 

u, v=o 
(2.7) 

F o r  ease of programming, the inversion relation is not used. Instead 

the positive kerneled transform w i l l  always be employed, thereby 

introducing rotated r e  trans formed images . 
As with the continuous case,  equation (2. l ) ,  f(x,y)  is a two 

dimensional spatial function and F(u, v) is its Fourier transform. 

However, the functions f(x,y) and F(u,v)  have, of necessity, been 

quantized in the space and frequency domains, respectively. The 

indices x, y, u, v, take on integer values running from ze ro  to N-1. 

Also, equation (2.6) represents a finite transformation. The discrete 

two dimensional transform can be expressed in the form of 

with the inversion formula 

(2.9) 
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However, to maintain continuity, equation (2.6) wi l l  be adhered to. 

An initial survey of digital Fourier  transforming techniques 

has indicated that until very recently only brute force methods were 

available for  producing the transformation [ 6 1  For  instance, if it  

is desired to compute the one dimensional finite Fourier  transform 

of a function f(x) sampled a t  N points, then the finite Fourier  trans- 

form is given by 

(2.10) 

2 
Computation of F(u)  by conventional techniques requires N complex 

additions and multiplications. 

(2.6) by the brute force method requires N 

Computation of F(u, v) in equation 

4 complex additions and 

multiplications. T o  evaluate a picture of 1000 by 1000 elements 

12 
requires 10 complex additions and multiplications. 

In 1965 Cooley and Tukey developed an  algorithm which reduced 

the number of complex additions and multiplications in the one dimen- 

1 
sional case  to N lg N each [7] . 
highly composite number and is generally taken to be equal to 2 

The algorithm requires N to be a 

(a 
n 

readily adaptable parameter to digital cornputations). 

lg represents the logarithm to the base two. 1 
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2.4 One Dimensional High Speed Fourier Transform Algorithm 

In developing the experimental capability needed for Fourier 

coding research, a one dimensional Fourier transform algorithm w a s  

developed. The algorithm described here  utilizes a modification of 

the Cooley-Tukey approach and requires N lg N complex additions 

and only (:)[ Lg (N)-2] t 1 complex multiplications for the one 

dimensional example [ 8 1 .  This savings is significant when it is 

realized that a complex multiplication includes two real  multiplica- 

tions and four rea l  additions. Since most  computers have a longer 

multiply than add time, the computation period is greatly reduced. 

The reduction of complex multiplication operations can be achieved 

by evaluating spectral  components in a specified order and using the 

fac t that 

(2.11) 

The algorithm can be explained by letting f(x) be a one-dimen- 

sional complex function which has been sampled and stored in N = 2 

locations and defining F(u) to be the spectral  domain representation 

of the Fourier transform of f(x) given by the equation 

n 

(2.12) 

I 
to within a normalizing constant - . 

TK 
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Now, expressing x and u in binary form, 

x = x  x ... x x * x.e(0,1) (2.13) 
1 0’ J n-1 n-2 

u = u u ... u u U . E ( O Y 1 )  n-1 n-2 1 0’ J 
(2.14) 

and taking advantage of the integer periodic qualities of the complex 

exponential function, F (u )  can be written as 93 

1 1  1 1  
y ..., u ) =  c c  ... c c f(XnmlY ,x  o )P n-1 p n I i * P I P ~  

xo,xl ... x ,x  =o F(un- 1 0 
n-2 n-1 

(2. 15) 

where 

2n i 
. , e . . ,  u 0 ,  ..., 0]Xj )  J 0’ (2.16) 

Now upon summing over the x 

x 

fic order. 

starting with the most  significant bit, 

, i t  is evident that the sum of equation (2.12) is made in a speci- 
j’ 

n- 1 

Performing the Computation in this order allows for the 

storage of calculations so that no identical computation need be 

repeated. 

Note that for each sum over x the exponential, P., can only 
j’ J 

take on specific values a s  a function of the particular spectral  point, 

uy being evaluated. 

(approaching the least  significant bit of the binary representation of 

In fact, a s  more  and more  x.  a r e  summed 
J 
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x) i t  is evident that the exponential, P., takes on values defined by the 

shifting of the binary representation of the spectral  point, u. F o r  

example, if the spectral  point 001 were being evaluated, P. would 

take on values defined by 

J 

J 

217 i 217 i 
P. = exp [ y- (1OO)x. ] , P. = exp [ N ( 0 1 0 ) ~ .  ] and 

J J J J 

2 n i  
P. = exp [ y (001)x. ] . 

J J 

For  convenience, C E exp - 217iK is defined and a table is formed in 

which P. a r e  defined for each step in the computation and for each 

spectral  point. In constructing such a table, i t  is advantageous to 

k N 

J 

l i s t  the spectral  points as increasing binary numbers with the most  

significant bit on the right. In evaluating a particular spectral  point, 

that point should be interpreted a s  its binary representation with the 

most significant bit on the left. 

figure 2-3. 

The table for n =  4 is given in 

In evaluating spectral  components as they a r e  listed in the table, 

i t  is found that after evaluating point u = 0 and retaining all inter- 

mediate sums in their storage locations, the evaluation of point u = 8 

requires only a single subtaction. This is because C. = -C 
J (j +:I’ 

and from the table, C = -Co = -1. To evaluate spectral  point u = 4 
8 

i t  is only necessary to back up two storage locations and perform a 
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Program 1 N u m b e r  
Exponential Factor Values Spectral Point . 

I PN u u u u  3 2 1 0  p1 p3 p2 

1 1 0 0 0 0  1 

1 1 0 0 0  1 ‘ 8  

0 1 0 0  
‘8 2 1 1 

1 1 

1 
‘ 8  

‘8 1 

1 ‘8 

1 1 0 0  
‘12 ! 1 ‘8 

0 0 1 0  3 

1 0 1 0  
‘10 ,! ‘4 

0 1 1 0  8 1  2 ‘ 12 

‘14 I ‘12 
1 1 1 0  

0 0 0 1  0 4 

--I---- I 
1 0 0 1  

‘2 1 ‘9 I 
0 1 0 1  

‘10 2 

‘ 10 ‘13 1 1 1 0 1  

Q I  3 0 0 1 1  

1 0 1 1  1 ‘11 

2 0 
‘ 6  

~ 

0 1 1 1  ‘ 14 

‘ 14 ‘8 I ‘12 ‘15 I 1 1 1 1 1  

Figure 2-3. --Spectral Point Evaluation for N = 16 



21  

subtraction to obtain C 

plication to obtain C in column P Note that this C is circled. 

in column P 8 1' and then perform one multi- 

4 0' 4 

To evaluate spectral  point u = 12 only a simple subtraction is neces- 

s a r y a s  C = -C Continuing in this manner it i s  seen that all 12' 4 

columns contain pairs of C = -C and that whenever one of 
j (j+F) 

these pairs is encountered, a simple subtraction is in order. The 

circled constants a r e  the locations in the algorithm in which a multi- 

plication must  take place. The number of actual multiplications that 

wi l l  be required for  each circled constant equals two raised to the 

index of the column in which the circled constant appears. Thus, 

from the table, the total number of multiplications required is equal 

to (7)2 -t (3)2 + (1)2 = 17  complex multiplications. In general, the 
0 1 2 

number of complex multiplications is equal to 

(2.17) 
k=2 

n where N = 2 

As an  example, Fourier transforming a function with 1024 points 

requires 4097 complex multiplications a s  compared to N lg N = 

10,240 complex multiplications. With such an  algorithm the number 

of exponential constants, C., that must  be used is (N/2 )  - 1. 

number of storage locations for  the entire transformation is N initial 

The 
J 
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data points, N spectral  data points, and N-2 temporary data points. 

Implementation of the algorithm is best  described with re fer -  

ence to figure 2-4. In designing the computer program to implement 

the one-dimensional algorithm, additional computation may be saved 

if  the input is known to be real. 

fests itself as a symmetric conjugate property 9f the Fourier trans- 

Such a restriction on the input mani- 

N form,  and consequently only - t 1 spectral  data points need be cal- 2 

culated. However, the program must  be able to accept complex 

inputs whenever the case a r i ses .  Figure 2-4 shows the command 

and control for the program. The spectral  point is calculated by 

incrementing a binary counter and interpreting the most significant 

bit a s  the least. The program numbers a r e  obtained by a n  inverse 

sieving operation as in the example of figure 2-3, The coefficient 

addresses  are computed when a multiplication becomes necessary. 

Finally, a branch to a specific program takes place. Program PNO 

wi l l  always be the f i r s t  program. 

of the d a t a  input to the second half, storing the results in z storage 

I t  sequentially adds the f i r s t  ha l f  

N 

locations. 

one storage location. 

function, f(x). 

This operation is repeated until the final s u m  is stored in 

This result  is  the average value of the original 

Program PN1 simply backs up a storage location and 

performs a subtraction resulting in the value for the spectral  point 

found by adding - to the prior spectral  point. This can be verified N 
2 
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f rom figure 2-3 where program P N 1  always evaluates the spectral  

point 5 = 8 greater than the previous spectral point. Notice that 2 

program P N l  always evaluates spectral  points greater than or equal 

to E and consequently need not be implemented, except once, for 2 

real inputs, A l l  other programs back up a respective number of 

levels of storage locations, implement a ser ies  of subtractions and 

multiplications, and branch to the next lower program number, 

2, 5 Experimental Results 

The one dimensional Fourier transform algorithm described 

in the previous section has been incorporated into a two dimensional 

Fourier transforming program. The operation and data flow of this 

program is described in the appendix. 

the two dimensional program a r e  encouraging, and a r e  presented 

Experimental results utilizing 

below. 

A two dimensional real  function whose Fourier transform is 

mathematically known is the f i r s t  scene. The simplest such function 

is probably a square of uniform amplitude. The Fourier transform 

sin au 
of the square is a (?)( si:,”v> pattern in the frequency 

plane where a i s  an  appropriate constant. 

centered in the space domain, the frequency domain w i l l  have a 

If the square is not 

phase shift associated w i t h  the pattern. 

before, all optical or  light sensing devices are sensitive only to 

In addition, as mentioned 



2 5  

intensities and not amplitudes and phases. 

sentation of the Fourier  domain wi l l  Fontain only magnitude informa- 

tion with a loss of phase information. Two visual display techniques 

a r e  employed, 

Therefore visual repre-  

The f i r s t  technique displays the square root of the 

sum of the squares of the real  and imaginary components of each 

frequency sample. The second technique displays the logarithm of 

the magnitude of the Fourier  transform. This produces a nonlinear 

representation of the Fourier samples but allows viewing of low 

magnitude information that otherwise would remain undetected. 

Since neither the magnitude nor logarithm of the magnitude display 

techniques al ter  the physical positioning of the Fourier  transform 

information, these display methods have become exceedingly useful 

tools in studying the information distribution in the frequency domain. 

Figure 2-5 contains the square test function and i ts  Fourier  

display. Figure 2- 5a displays the square of uniform amplitude. 

Figure 2-5b displays the logarithm of the magnitude of the Fourier  

transform of the square in figure 2-5a. 

display is a I [ (sin au) /au]  [ (sin av ) / av l  I function. 

is high frequency information far out on the axes of the frequency 

plane but very little off axis. 

are no diagonal brightness transitions in the original square. Figure 

2-5c is a two level block letter scene which has been Fourier  trans- 

formed. 

The shape of the logarithmic 

Notice that there 

This is intuitively justified as there 

The logarithm of the magnitude of the Fourier  transform is 
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a) Square b) Logarithm of the Magnitude of 
the Fourier  Transform of the 
Square 

c) Block Letters "USC" d) Logarithm of the Magnitude of 
the Fourier Transform of the 
Biock Letters 

Figure 2-5.  - -  Two Test  Scenes 
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displayed in figure 2-5d. 

I t  is desirable to obtain the original function from a double 

implementation of the two dimensional Fourie r transform program, 

Such results a r e  afforded by figures 2-6, 2-7,  and 2-8. 

is a typical moon surface with a portion of the Surveyor footpad in 

the upper right corner.  This scene has been Fourier transformed 

and the magnitude and the logarithm of the magnitude of the Fourier 

transform a r e  displayed in figure 2-6b and 2-6c, respectively. The 

Fourier transform of the original scene has been introduced, in its 

complex form, into the two dimensional transform program; and a 

second Fourier transform has been taken. The result  of this trans- 

formation has been rotated 180 

Figures 2-7 and 2-8 a r e  two different moon scenes which have been 

double Fourier transformed. There is  no noticeable degradation in 

either of the retransformations in these figures. 

Figure 2-6 

0 and is displayed in figure 2-6d. 

2.6 Data Processing Errors 

The subject of digital Fourier transforming of images would 

not be complete without a discussion of the limitations due to the 

discrete and finite nature of the computations. 

lations have been car r ied  out in simple single precision integer 

arithmetic. This means that all results a r e  integer valued and 

The computer calcu- 
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a) Surveyor Footpad b) Magnitude of the Fourier 
Trans form 

c) Logarithm of the Magnitude of the 
Fourier Transform 

d) Double Fourier Transform 

Figure 2-6.  - -  Fourier Transform of Footpad 
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a) Surveyor Boom b) Magnitude of the Fourier 
Transform 

c) Logarithm of the Magnitude of 
the Fourier Transform 

d) Double Fourier Transform 

Figure 2-7.  - -  Fourier Transform of Boom 
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a)  Surveyor Box b) Magnitude of the Fourier 
T r ansf o r m  

c) Logarithm of the Magnitude of 
the Fourier  Transform 

d) Double Fourier  Transform 

Figure 2-8. - -  Fourier Transform of Box 
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17 
bounded by 3 2 , the capacity of an eighteen bit computer register. 

A problem that always a r i s e s  in the use of a finite two dimen- 

sional Fourier transform algorithm is the truncation e r ror .  

type of e r r o r  occurs when the normalization constant, 1 / N ,  is used 

in transforming from the spatial to Fourier or  Fourier  to spatial ' 

domains. A partial solution to this problem is to normalize by a 

constant only a s  large a s  is needed to prevent overflow. 

Fourier transform computation philosophy is to make maximum use 

of register length until fhe last  possible moment when normalization 

is necessary for display purposes. 

This 

Thus, the 
' 

In addition to truncation e r r o r s ,  a certain amount of high f re -  

quency e r r o r  is introduced due to the fact that only a finite number 

of Fourier  coefficients a r e  calculated. 

due to truncation of the algorithm, have been found to be quite insig- 

nifican t . 

These high frequency e r r o r s ,  

An additional point concerning the nature of the finite Fourier 

transformation must  be made. This relates to the fact that the 

Fourier  s e r i e s  approximation i s  valid only if the scene is periodic 

with periodicity equal to the window of observation. 

be taken into consideration when viewing the energy distributions 

in the Fourier domain. I t  is  possible, when the da ta  on two parallel 

edges of the window of observation a r e  quite dissimilar,  to influence 

This fact mus t  
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the energy in the frequency domain along the perpendicular frequency 

axes. 

a r e  adjacent. 

The periodic assumption implies that parallel edges of a scepe 

Consequently, certain on axis information in the 

Faurier  domain could be due to brightness transitions on opposite 

but periodically adjacent edges in the spatial domain. 

this phenomena can be reduced by smoothing the transitions a t  the 

edges of the observation window. 

development of special windows of observation. 

of observation, then, could result in different on axis energies in the 

Fourier domain. The effect of the square binary observation window 

The effect of 

Such techniques result in the 

Different windows 

used in this research is relatively insignificant and wil l  not be devel- 

oped fsr ther. 

The above discussions a r e  meant to imply that the results of 

the finite algorithm have been well enough behaved to glean meaning- 

ful experimental results by operations on the Fourier domain of 

images, However, the first  step that should be taken in developing 

a realistic developmental model for a Fourier coding scheme would 

be a greater resolution algorithm and double precision arithmetic. 

In fact, floating point calculations should be considered for a more 

exact transforming program. 



CHAPTER 3 

PROPERTIES OF THE FREQUENCY DOMAIN 

Certain deterministic properties can be derived for the fre- 

quency domain due to restrictions in the space domain. These 

properties, which w i l l  be used in developing Fourier  coding tech- 

niques in the frequency domain, a r e  symmetry,  dynamic range, 

entr opy , and nonne ga tive -def ini t enes s . 

3 . 1  Symmetry 

The function f(x,y) describes the intensity of samples in the 

spatial domain of a n  image, 

and therefore, f(x,y) is also nonnegative and real. 

Intensities a r e  nonnegative and real; 

Making use of 

this restriction on f(x,y), a property of conjugate symmetry can be 

demonstrated for  the frequency domain. Let the Fourier  transform 

of f(x, y )  be expressed as 

2ll 2n N-IN-1 
~ ( u , v ) =  - c c f (x ,y){cos- (uxtvy) t i  N sin-(uxtvy)} N ,  ( 3 . 1 )  

x,y=o 

The Fourier  transform, F(u,v) ,  can then be divided into real and 

imaginary components 

33  



this symmetric conjugate relationship implies that quadrants @ 
and @ a r e  deterministically dependent as a r e  quadrants @ and 

@ , Thus any two independent quadrants a r e  sufficient far complete 

knowledge of the entire frequency domain. A visual example of this 

symmetry property is afforded by figure 3-2 which displays the 

logarithm of the magnitude of the Fourier  transforms of variouq 
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U 

0 

V 

Figure 3 - 1 .  --Frequency Domain Quadrants 
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a) Footpad b) Block Letters IIUSC" 

c )  Surveyor Box d) Surveyor Boom 

Figure 3-2.  - -  Logarithm of the Magnitude of the Fourier 
Transforms of Test  Scenes 
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test scenes. It is evident that diagonally opposite quadrants a r e  

identical due to displaying magnitude rather than phase and amplitude 

information. 
i* 

It  is possible to demonstrate that knowledge of two adjacent, 

and therefore, independent quadrants is sufficient for  total recon- ii 

struction of the original image by an alternate proof. 

based upon the application of a Hilbert or quadrature filter to two 

The proof is 

dimensional functions. Let a two dimensional filter be constructed 

such that there is filtering power in only one dimension with impulse 

response given by 

1 
c 

TTX 
( 3 . 8 )  

where 6(y) is  the Dirac delta function. The transfer function of the 

filter is  given by 

This transfer function represents a one dimensional quadrature filter 

or Hilbert transform operator in the x dimension. Referring to 

figure 3-3 ,  the output of the fi l ter ,  f (x ,y) ,  can be obtained from 
A 

linear systems analysis as 

(3.10) 

where @ implies a two dimensional convolution. The Fourier  
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h 

transform of the output, F(u,v), is given by 

A 

F(u, v) = F(u, v) H(u, v) ( 3 . 1 1 )  

Now a function z(x,y) is formed such that 

( 3 . 1 2 )  

is the analytic signal associated with f(x,y). 

Z(u,v), of z(x,y) is given by 

The Fourier transform, 

6 

Z(u, v) = F(u, v) t i F(u,v) ( 3 . 1 3 )  

And hence, f rom equation ( 3 . 1 1 )  

Z(u,v) = F(u, v) -t i F(u, v) H(u,v) ( 3 . 1 4 )  

Finally, from equation (3. 9) 

Z(u, v) = 2 F(u, v) U(u) (3.  1 5 )  

where U(u) is a step function at the v axis in the u direction. The 

function, z(x,y), can thus be obtained with the knowledge of only 

half of the frequency domain. The only restriction necessary to 

recover the original function, f(x,y),  from z(x,y) is that f(x,y) be 

real. 

z(x,y) function results in the desired output. 

Then a simple extraction of the real  field from the complex 

The above analysis w a s  

carr ied out for an  arbi t rary dimension x and is valid for the y dimen- 
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sion as well. 

Both the symmetric conjugate and Hilbert approach lead to the 

same conclusion. Any two adjacent quadrants in the frequency 

domain are  sufficient to reconstruct the original function when it is 

real. In addition, the reconstruction can be implemented in either 

of two modes: a two dimensional Fourier transform of half a plane 

can be taken and the desired function extracted from the real  par t  of 

the transform, or the entire frequency domain can be regenerated 

using the symmetric conjugate property and then retransformed to 

obtain the original. 

a computational one due to the finite computer implementation, to be 

discussed in chapter 8. 

I 

- 

The only difference between the two methods is 

The conclusion from the above analyses indicates that it is 

only necessary to transmit half the number of sample points in the 

frequency domain as in the spatial domain. 

any type of data reduction. 

ples, the frequency domain wi l l  have N 12 comples samples. 

This does not result  in 

2 rea l  sam- If the spatial dprnain has N 
2 

Thus, 

there is an  equal number of units of data to be transmitted in both 

3.2 Dynamic Range 

An important subject not yet explicitly discussed is the dynamic 

range of values in the Fourier domain. I t  is of interest  to introduce 
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a n  upper bound, A,  on the function f(x,y). 

values and consequently the dynamic range that a function can achieve 

in the space domain is from zero  to A .  This assumption of a bound 

on f(x, y), although mathematically valid, a l so  has physical signifi- 

cance. For  most  light sensing devices the dynamic range is a real  

physical limitation and not a n  assumption f o r  ease in calculations. 

Referring to equation (3 .  l) ,  the range of values allowed a t  the origin 

Therefore the range of 

- 

in the frequency domain is seen to be zero  to AN. 

f(x, y) is constant at value A the upper bound is reached, and when 

f(x,y) is identically zero,  the lower bound is achieved. 

on all frequencies other than the origin a r e  +AN/2. 

a r e  based on the condition that f(x,y) take on the value A either in 

phase or  out of phase and take on the value zero  otherwise for  any 

given two dimensional trigonometric function. The upper bound is 

For  the case when 

The bounds 

These bounds 

obtained from the in phase case and the lower bound, from the out of 

phase case. 

The dynamic range of F(u,v)  is dependent upon the normaliza- 

tion constant. 

(3. 1) in order that the same equation becomes the definition of the 

Fourier inversion operation mith a 180 

formations from one domain to the other can be implemented with 

the same normalization constant. Actually, for computational rea-  

sons, this normalization constant is selected so that maximum use 

N is adopted as the normalizing constant in equation 

0 rotation. In this way trans- 
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of the computer registers is  made, 

chapter 2. 

This techniqu was discussed in 

The emphatic point i s  that the frequency domain must be 

capable of handling far greater magnitude numbers than the spatial 

domain. 

systems have severe limitations. The dynamic range necessary for - 

This demonstrates why certain optical data processing - 

goQd experimental frequency domain operations is too large for most 

physical systems to handle. However, there are some new photo- 

graphic holographic techniques that approach the required dynamic 

ranges of the Fourier frequency domain, but theee w i l l  not be dis- 

cussed here  [ 101. 

While the dynamic range of possible values is extremely large 

in the Fourier domain, i t  is interesting to note that f ew points can 

actually take on large values. A s  is known from Parseval 's  relation- 

ship, the total energies in the space and frequency domain must  be 

equal [ l l ,  pg. 271.  

N-1 N-1 N-1 N-1 
C C [f(x,y)12 = C C IF(u,v)I2 (3.16) 

x,y=o u, v=o 

Consequently, only a few spectral  points can be large because of the 

energy bound in the frequency domain. In other words, a few large 

valued spectral  components wi l l  c o n e m e  most of the total energy of 

the original spatial function. I t  is this fact, the redistribution of 

energy in the frequency domain, that allows a large amount of 
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bandwidth reduction in transmitting most  of the original scene. 

A s  an  example of the dynamic range often obtained in the fre-  

quency domain, consider the results demonstrated by figure 3-4. 

Figures 3-4a and 3-4c a r e  the magnitudes of the Fourier  transforms 

of a square and a circle,  respectively. Figures 3-4b and 3-4d a r e  

three dimensional displays of the two magnitude transforms. The 

analytic solutions to the magnitude squared of the Fourier  transform 
7 7 

of a square and a circle  a r e  known to be ) and 
Jl(kw) ,2 

respectively. Here  J ( ) is a f i r s t  order Bessel func- C z  kw J ’  1 

tion and w is a radial spatial frequency. The dynamic range for 

the zeroth to f i rs t  order,  on axis lobe for these two functions is about 

21 : l  and 57:l. Similarly, the ratio of the zeroth to third order,  on 

axis lobe is 120: l  and 625: l ,  respectively. These lobes a r e  barely 

visible in the perspective displays of figure 3-4 but a r e  present in  

the computer as a r e  much higher order lobes. These examples 

emphasize the ca re  which must  be taken when drawing conclusions 

from displays of the frequency domain. 

3 . 3  Entropy 

To analyze the theoretical efficiency of transmitting the 

Fourier  transform of a scene rather  than the scene itself, i t  is 

necessary to compare the entropy of the spatial and Fourier  domain 

information. Towards this end it would be expedient to know that i t  
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a) Magnitude of the Fourier 
Transform of a Square 

b) Perspective of the Magnitude 
of the Fourier  Transform of 
the Square 

c) Magnitude of the Fourier  
Transform of a Circle 

d) Perspective of the Magnitude 
of the Fourier Transform of 
the Circle 

Figure 3-4. - -  Illustration of Dynamic Range 
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is valid to assume that the entropy of a scene and the Fourier trans- 

form of the scene is identical. The proof that follows demonstrates 

the invariant nature of a Fourier scene and space scene as informa- 

tion sources of a communication system [ 121. In fact, the analysis 

holds for any two dimensional complex bipolar function and thus is 

applicable to certain types of Fourier  holography where complex 

electromagnetic optical fields a r e  stored in two dimensions. 

Introducing 

to become 

subscripted notation causes the Fourier definition 

2rr i N-1 N-1 1 
N 
- c c f exp { 7 (wr+vy)} 

xa Y x, y=o 
(3.17) 

Now the two dimensional functions a r e  complex samples 

= a  t i b  }where x , y  range over the integers [ O , l ,  .... N-11. 
XI Y 

Also { F  = c  + i d  }is a sequence of complex samples; and n 

and v range over the same integer index set. 
X, Y 

u ,v  u ,v  u ,v  

Now consider the f 

samples to be complex variables of a two dimensional space domain 

with joint probability density and distribution functions 

and 

b , ...., b , ...., b N-I,N-I’ o,o X I  Y N-1, N-1 Pf(aO, O, . . . . ,a  , .... , a  
xa Y 
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respectively. Similarly, le t  the F samples be complex random 

variables of a two dimensional frequency domain with joint probability 

us v 

density and distribution func tions 

bl 

and 

respectively. 

The entropy of the space domain scene is gives by 

H(f) = - C P f  log P f (3.18) 

and the entropy of the frequency domain scene by 

(3.19) 

The summations a r e  over a l l  possible combinations of distributions 

in the space and frequency domains, respectively. Reza bas shown 

that the entropies of the two domains a r e  related by 

H(f) = H(F) - E I... (3.20) 

where J is the Jacobian of the transformation between the two spaces 
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and E[ * I is an  ensemble average [ 13, pg. 2871. The Jacobian 

r elates the density functions by the following: 

PF = Pf/ l  J l  (3.21) 

The problem has now been reduced to proving that the Jacobian 

of the transformation is unity. There a r e  two ways to proceed a t  

this point. 

the Jacobian is unity by noticing that the transformation is linear and 

An abstract  analysis approach allows verification that 

proving that norms and hence inner products a r e  preserved. 

second approach, presented below, shows that the Jacobian is unity 

The 

from matr ix  theory. The Jacobian is given by 

(3 22) 

where u,v,x,y range over I, and the dimensions of the Jacobian a r e  

N by N . Let the matr ix  representation of J be equal to T. Then 
2 2 

with indexing as illustrated. Note that the complex conjugate of T is 

- 

See Hewitt and Stromberg, section 16 reference [ 141. 1 
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(3.24) 

with the l a m a  i exing as for T. Thq transpose of 

g iven by 

(3.25) 

*t 
with indgxing reversed. T and T can be multiplied together to 

form 

91 y M - l J v  0 ,  Y w-1, P 

th 
The resulting rnatrk, with the path row t h e s  the rs column 

illustrated, i s  given by 

Finally 

(3.26) 

(3.27) 
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by the orthogonality of the Fdurier kernel except a t  r=p  and s=q. 

demonstrates that T is a unitary matrix [ 15, pg. 2 5 1  The 

determinant of a unitary matrix is unity; and t herefore,  the absolute 

value of the Jacobian of the transformation is unity. 

( 3 . 3 0 )  

Thus the joint density functions a r e  equal, pF = Pf , and the entropies 

of the two spaces a r e  now related by 

Hence the frequency domain contains the same amount of infor- 

mation as the space domain. 

a solution to the coding problem in the frequency domain. 

result merely states that a channel rate of x bits per picture should 

This result should not be construed as 

The 

be achieved by transmitting either in the space of frequency domain. 

In general, finding a coding scheme in the frequency domain as 

efficient as one in the space domain is not an  easy task, This topic 

wi l l  be discussed more  fully in chapter 5. 



3.4 Nonnegative-Definite 

A final deterministic property of the frequency domain to be 

discussed is the fact that the Fourier transform of a real  nonnegative 

function is nonnegative-definite [ 11, pg. 2251. 

notation this property can be expressed as 

In two dimensional 
4 

n n  
C C  a a F(u - u , v  - v k ) 1 0  

m, k=l  

* 
m k  m k m (3.32) 

where the a's a r e  any complex constants, and the inequality must 

holds for any value of n, urn, uk, vm, vk. 

above condition can be demonstrated by the following inequality 

Proof of the necessity of the 

Expanding the square magnitude and interchanging the order of inte- 

gration and summation yields 

Finally 

n n  
o < c c a a' F ( U ~ -  uk,vm-vk) - m k  m, k=l  

(3.35) 
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PrQof of the sufficiency of such a condition is given by Bochner [ 16, 

pg. 2071. 

While the nonnegative-definite criterion is valid, tes ting a 

functiw to determine if i t  belongs to the class  of nonnegative-definite 

functions is usually not facile. One result that the nonnegative- 

definite property requires of the frequency domain is that 

(3.36a) 

(3.36b) 

This can be found by setting n=2 and using the values a = 1 and 

a2= 1, -l,i, -i for four different cases  in equation (3.3 5). The only 

1 

difference between nonnegakive-definite functions and Fourier trans- 

forms of a rb i t ra ry  real functions is the value a t  the origin of the 



CHAPTER 4 

IMAGE EVALUATION 

A two dimensional matched filter offers a natural tool for the .̂ 

development of a quantitative image evaluation technique. Such a 

technique is developed in this chapter. In addition, two statistical 

image evaluation procedures a r e  implemented for the purpose of 

comparison. 

The advantage of having quantitative image evaluation tech- 

niques is that they take the burden of decision off the subjective 

evaluations of the human eye. 

ent experimental methods can be objectively cOmpared and Emage 

processing sys  tems can be quantitatively optimized. 

With quantitative techniques , differ- 

The major  

limitation of such evaluation procedures is that usually the ultimate 

receiver of an image processing system i s  the human eye, and i t  is 

difficult to develop quantitative models for such a receiver. In 

particular, the eye is more  sensitive to high frequency "salt and 

pepper" and spatially correlated or patterned noise than i t  i s  to low 

frequency slowly varying and random spatial noise patterns [ 11. If 

the same noise energy exists in both cases  and if the quantitative 

image evaluation model i s  a function of total noise energy, then the 

52 



53 

quantitative results a r e  not going to agree with the most pleasing 

results as far as the eye is concerned. However, under certain 

circumstances correlations can be made with the results of the 

tched fi l ter  technique and subjective human viewing. Both the 

atched filter and statis tical image evaluation procedures a r e  

described below. 

4.1 Statistical Evaluation 

There a r e  an unlimited number of statistical functions that 

might be used a s  a quantitative measure of experimental results. 

For instance the difference in processed and original scenes can be 

formed and measurements made on this "poise difference". 

e r r o r s  introduced by processing, transmitting, and reconstructing 

are considered to be additive noise, then the "noise difference" 

scene can be measured for statistical parameters. 

If all 

If high frequency 

noise is more  undesirable than low frequency noise, a higher order 

statistical moment of the noise should be investigated. This type of 

statistic places more emphasis on large noise samples and thus high 

frequency noige on the original scene. 

moments of the noise, a histogram of noise samples might be inves- 

tigated. 

would be of interest  as this would give the relative frequency of 

occurence of large noise samples as versus small  noise samples; 

In addition to measuring 

In this case the shape of the histogram at higher values 
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F o r  and, consequently, high frequency versus low frequency noise. 

a photometric image evaluation criterion where absolute values of 

given picture elements a r e  of interest, the higher order moment 

statistic is probably more  valuable than a f i r s t  order statistic. How- 

ever for a photometric measurement criterion, and average over the 

entire image of a higher order mament statistic is probably of less 

value than such a n  average would be for a total image evaluation 

c ri ter i  on. 

. 

The approach taken in this chapter is to develop two statistical 

parameters  to evaluate a total image; and consequently, an  average 

over the entire image plane wil l  be taken. 

measured w i l l  be the average of the absolute value of the e r r o r  a t  

each element in the "noise difference" plane mentioned above. If 

the pre-processed image is f(x,y) and the post-processed image is 

The f i r s t  parameter 

N-1 N-1 
c c  I 1 

2 
- 
N x=O y=O 

w i l l  be referred to as the mean absolute e r r o r  per  element. The 

second parameter measured w i l l  be the average of the square e r r o r  

a t  each element in the noise plane minus the square of the mean 

absolute e r r o r  per element. 

absolute e r r o r  per  element. Mathematically, this expression is 

This wi l l  be referred to a s  the variance 
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Both these measurements have been performed for test scenes in 

I section 4.3 of this chapter. 

4.2 Two Dimensional Matched Filter 

Another method that can be used to measure the quality of a 

processed image involves the use of a two dimensional matched 

filter. The concept of the matched filter originally a rose  in the 

field of communication engineering in problems of signal detection 

and evaluation. 

is derived to be the filter which maximizes the signal to noise ratio 

over a given interval of observation [ 17, pg, 2391. 

In the study of optimum filtering, the matched filter 

The matched 

filter is often used in pattern recognition experiments a s  the detect- 

ing instrument for given patterns. 

ing has been performed optically with some success [ 51. 

Two dimensional matched filter- 

In two 

dimensions, if the pattern of signal to be detected is f(x,y) with 

Fourier transform F(u,v), then the matched filter is defined as 

F*'us v, , where N(u, v) is the noise power spectrum in which the 

signal is immersed. 

portion of a scene. 

which the s ignal ,  f(x,y), is to be detected, then the output, #(x,y), 

N (u, v) 

This spectrum can be defined a s  any unwanted 

If g(x,y) is the two dimensional plane from 
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of the matched fi l ter  is 

-I -I 
." 

where the cell (-I, -I;I,I) is the entire picture. The true matched 

fi l ter  w i l l  detect phase and amplitude information and, consequently, 

is position as well a s  shape sensitive. In other words, the matched 

fi l ter  can detect the difference between rotationally similar charac- 

te rs  such as  I t  p" and I'd" or ' ' 6 ' '  and l19ll where the magnitude of the 

transform of these types of signals is identical but their phases a r e  

different. An experimental result  w i l l  offer insight into the discus- 

sion. Figure 4 - l a  shows the signal f(x,y), the letter "d", which is 

the s igna l  to be detected from the array of "p's" and I'd'sfr of figure 

4-lb.  A suboptimum matched filter was  constructed a s  F*(u,v) 

ignoring the noise spectrum of the "prsIr. 

of the matched filter and indicates those points in the two dimensionzl 

plane where the greatest  correlation with the letter "d" exists. A 

three dimensional display of the correlation peaks is shown in figure 

4-ld. 

example. 

of the detected signal, and the height of the correlation peak indicates 

Figure 4- lc  is the output 

Two significant results a r e  immediately obvious from this 

The position of the correlation peak indicates the position 

the degree of correlation of the detected signal with the pattern to be 

recognized. I t  is this latter property, the degree of correlation, 



a) Signal to be Detected 

c) Fi l ter  Output 

5 7  

b) Array  of Signals and Noise 

d) Perspective of Correlation 
Peaks 

Figure 4-1. - -  Matched Filter Experiment 
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that can be used as a measure  of the processing, transmission, and 

reconstruction noise on the original image. 

If the matched filter is used as a measure  of correlation of 

processed to unprocessed images, then positional information is 

unnecessary. 

convolving the pre- and post-processed images by shifting one across  

the other and measuring the correlation a t  each shift. 

This can be explained by interpreting the filter a s  

When the, two 

images a r e  synchronized in both the x and y dimension, the greatest  

correlation w i l l  occur and this w i l l  be a t  the origin. Consequently, 

the output of the matched fi l ter ,  sampled a t  the origin, w i l l  indicate 

the degree of correlation between the two inputs. 

tion wi l l  occur when the filter matches an  image with itself in the 

absence of noise. 

filter then 

The peak correla-  

Specifically, when c ( x , y )  is the output of the 

I 1  

. .J 
-I -I 

I I  1 o(x, y) = ! i F(u, v)F:b(u, v) exp fi(uxtvy) 1 dudv (4.4) 

and when the output of the fi l ter  is sampled a t  the origin then 

I 1  

(4. 5) 
2 

O(0,O) = [ 1 IF[u,v)I dudv 
t J  c 

-I -I 

In other words, the best  possible correlation occurs when the pre- 

and post-processed images a r e  identical, and is equal to the energy 



59 

in the given image. 

to the total energy for fractional representation. 

filter in the presence of noise is 

The degree of correlation Gan then be normalized 

The output of the 

-I -I 

A digital counterpart to the two dimensional matched filter has been 

implemented and some typical experimental results a r e  presented 

below. 

4.3 Experimental Comparisons 

Figure 4-2 contains four images and their respective statistical 

and matched filtered results. 

decreasing visual pleasure. 

by the matched filter experiment decreases monotonically with 

decreasing subjectively pleasing results and appears to agree  with 

the response of the eye. 

mean and variance absolute e r r o r s  per element and a r e  obtained by 

subtracting the processed images from the original footpad scene. 

The mean absolute e r r o r  results indicate that the image of figure 

4-2c is better than that of ;igure 4-2b. This indication is not sub- 

stantiated by the matched filtered results or by subjective viewing. 

Also the variance absolute e r r o r  per element measurement indicates 

The images a r e  displayed in order of 

The degree of correlation determined 

The statistical results displayed include 
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a) Matched Fi l ter  Correlation : 1.000 
Mean Absolute E r r o r  per Element : 3.952 
V3riance Absolute E r r o r  per  Element : 5. 538 

b) Matched Fi l ter  Correlation : 0. 9703 
Mean Absolute E r r o r  per  Element : 4. 
Variance Absolute E r r o r  per  Element 

5. 308 

c) Matched Fi l ter  Correlation : 0. 9558 
Mean Absolute E r r o r  per Element : 4.005 
Variance Absolute E r r o r  per  Element : 6.223 

d) Matched Filter Correlation : 0. 9494 
Mean Absolute E r r o r  per  Element : 4. 
Vari2nce Absolute E r r o r  per  Element 

6. 550 

Figure 4-2. - -  Image Evaluation 
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image 4-2b is superior to 4-2a which is a clear  discrepancy with 

subjective and matched filter results. Higher moment statistical 

measurements could be taken but the problem with such a technique 

lies in the fact  that a few large noise e r r o r s  can completely dominate 

all other noise effects and consequently w i l l  produce an evaluation of 

a n  image which is not based upon the entire image's domain of defini- 

tion. 

simple process of retransforming back to the spatial domain has 

introduced a few large e r r o r s  which have caused the variance mea- 

surement to incorrectly evaluate that image. A similar experiment 

has been performed on the Surveyor box and is presented in figure 

4-3. 

This is exactly what has happened in figure 4-2a, where the 

A word of caution is in order. The above results a r e  not to be 

construed as proof that the matched filter is the answer to all auto- 

matic image evaluation problems. It can be used advantageously as 

a quantitative measure for relative results between similar process- 

ing techniques. In other words, the matched filter w i l l  discern 

between varying degrees of the same processing technique. 

exemplified by the ear l ie r  figures 4-2 and 4-3 where the narrower 

and narrower low pass filters a r e  used to obtain the varying images 

of that figure. Similarly the matched filter can be used to evaluate 

the results introduced by varying the number of quantum levels in a 

given quantization scheme. 

This is 

The main problem with the matched 
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a) Matched Fi l ter  Correlation : 1.000 
Mean Absolute E r r o r  per Element : 4. 704 
Variance Absolute E r r o r  per  Element : 34.47 

b) Matched Filter Correlation : 0. 9633 
Mean Absolute E r r o r  per Element : 5. 
Variance Absolute E r r o r  per  Element 

20.  04 

c) Matched Filter Correlation : 0. 9091 
Mean Absolute E r r o r  per  Element : 5. 619 
Variance Absolute E r r o r  per  Element : 22. 20 

d) Matched Filter Correlation : 0. 8659 
Mean Absolute E r r o r  per  Element : 6. 
Variance Absolute E r r o r  per  Element 

27.15 

Figure 4-3. - -  Image Evaluation 
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is that it cannot tell if the image makes sense. Consequently, 

i t  i s  possible to get better matches wi th  totally irrelevant images 

than with very  poor but relevant ones. 

I t  is difficult to draw a conclusion a s  to what techniques, if 

any, wi l l  offer an impartial image evaluation procedure. However, 

i t  is the conclusion of the author that if both subjective and matched 

filtered correlations can be used in parallel, subtle results,  some- 

times undetectable by the eye, can often be quantitatively evaluated 

s ucc e s s f ully . 

, 



CHAPTER 5 

FOURIER DOMAIN QUANTIZATION 

In digital communication systems it  is necessary to quantize 

information before it can be coded for  transmission purposes, 

because a finite dictionary code requires a finite number of values 

for data input. Quantization introduces an e r r o r  known a s  quantiza- 

tion noise. 

and techniques a r e  available for minimizing mean square quantization 

This e r r o r  can be analyzed from a statistical viewpoint, 

e r ro r .  

selection of proper quantization levels from the probability density 

function of the signal to be quantized [ 18, pg. 641 1. This chapter 

presents a brief stochastic analysis which results in the experimental 

implementation of a frequency adaptive quantization procedure. 

Such e r r o r  minimization procedures a r e  contingent on the 

Experimental results of the procedure a r e  presented, and an experi- 

mental tolerance for the frequency adaptive quantization parameter 

is demonstrated. 

5.1 Stochastic Analysis 

I t  is desirable to know as much a s  possible about the stochastic 

behavior of samples in the Fourier domain in order  to derive 

64 
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meaningful quantization rules for that domain. Ideally, this means 

determining the density function of each frequency sample in the 

Fourier domain. As an  effort in this direction, a stochastic model 

is presented below. 

Let @(x',y') be a continuous two dimensional wide sense station- 

a r y  random process with a bounded and continuous power spectral 

density, D(u,v), where u and v a r e  real. It is desired to observe 

the process over the two dimensional window, (-1, -I; I,I), and to 

sqmple the process at N 

of observation. A new process, F 

window of observation and the sampling period within the window, is 

formed according to the following 

2 
uniformly spaced points within the window 

(u,v) depending on both the 
N ¶  1 

Investigation of the variance of F (u,v) yields the following result 
N,  1 

in terms of a covariance function, p ,  on the process, @. 
N-IN-1 

cos 5' (u~-+vT) 2 1 
CJ F (u,v) = - N 2 I-,T=O C C e T e T ( n . ~ ) ( N - T ) p ( ~ , ~ ,  N 

N ,  1 

where I- and T a r e  integer values representing the two dimensional 

shift in the sampled function @(-$, 3) with itself. F: and E a r e  
I- T 

Newrnann factors taking the values C = 1 and C = 2 for all I- # O. 
0 7 
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Equation (5.2) can be expressed as 

71 TI  
N-1N-1 2 

F (u,v) = C c ~ ~ ~ ~ ( l - ~ ) ( l - ~ ) P ( ~ , ~ ) c o s ~ ( u ~ f v T )  
7, T=O 

0 

N,  1 

This is recognized as the Riemann approximating summation fo r  

large N for the following 

s (u,v) = c sl (1- 1.11 T)@- ~ ) P ( z l , z 2 ) c o s  12 I 2n(uzl+vz2) dzldzZ 
I 1  

I 
-3: -I 

(5.4) 

1 where c is a normalization constant and the 'continuous variables zi 

and z have replaced the sampled variables - and -, respectively. 

From Bochner's theorem it  is known that 

71 TI 
2 N N 

(5. 5) 

where R is a constant chosen so that D(u,v) is a probability density 

function [ 16, pg. 2071. Replacing the covariance function in equa- 

tion (5.5) yields 

W a J  

SI(u,v) = CR l D(u-u', v-v') ?(ut, v')  du' dv' ( 5 . 6 )  
- 03.. aJ 

where 5 is the two dimensional product Kejer kernel. 

that SI(usv) approaches cR D(u,v) uniformly on compact se t s  as I 

It is known 



67 

approaches infinity [ 19, pg. 21. Consequently, i t  is not unreason- 

able to assume that the variance, (J 

as the power spectral  density of the process,  8. 

(u, v), behaves approximately 
2 
F 
N, 1 

The results of this analysis have been obtained by f i r s t  letting 

the sampling interval approach zero and then letting the window of 

observation grow. It  is important to mention that if the relaxation 

or correlation radius of the covariance function, p ,  is small  com- 

pared to the interval of observation, then it i s  reasonable to assume 

that the variance, 0 (u,v), is already close to the power spectral  

density without increasing the observation window. A similar result  

can be obtained for the function F(u,v) defined in equation (2.6) by 

scaling the window of observation to unity and noting that f(x,y) is 

2 
F 

N ,  1 

the sampled version of the continuous process, 8.  In such a case 

A somewhat different approach from that above w i l l  yield 

essentially the same results. This approach indicates that when the 

sampling interval is fixed and the interval of observation increases,  

the variances of the frequency domain samples appear to behave as 

a sampled periodic function of the continuous power spectral density 

D(u,v). When the sampling interval is then allowed to decrease,  the 
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periodic function of the power spectral density approaches that 

density. 

that the variances of Fourier domain samples behave a@ the power 

spectral  density of the original process. 

Such results again indicate that i t  is reasonable to assume 

The above stochastic model indicates that for an  uncorrelated 

process,  the spectrum tends to be flat, and the variance of the 

spectral  components of the Fourier transform of f(x,y) a r e  fairly 

constant over a large range of frequencies, Conversely, if f(x,y) is 

a highly correlated process, the variance of F(u,v) tends to be large 

toward the low frequencies and falls off rapidly toward the higher 

frequencies. 

cally distributed with variance V . 
I t  w i l l  be assumed that the samples, f(x,y), a r e  identi- 

2 

It is convenient to express equation (5.7) in an espanded form 

in order to investigate certain limiting conditions. 

7 2nu7 
N-1 p 2 (u,v) = p(0,O) t 2 c ( l - ; ) P ( ; , o , c o s ~  

FN 7 =1 

2 nvT N-1 
t 2 c ( l -$ )P (o ,  $ ) C O S T  

T = l  
(5.8) 

+ 4  C ( 1 - $ ) ( 1 - ~ ) ~ ( ; , $ ) ~ 0 8 - ( u ~ + v T )  T 2n N-1 N-1 

N 
7, T = l  

In the case of a random process, f(x,y), which is constantly cor re-  

lated in one direction, x, with correlation K, and totally uneorrelated 
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in the other direction, the variance becomes 

L 
CJ (u,v) = p(0 ,O)  - K + N K  S(U) 
FN 

(5.9) 

2 
and for the case where p(0 ,O)  = K = V , the variance of the identi- 

cally distributed samples, f(x, y)$ then 

(5.10) 
2 2 

CJ (u,v) = V N 6(u) 
FN 

Equation (5.9) indicates that for highly correlated processes in one 

dimension the off axis variances are reduced by an  amount equal to 

the one dimensional correlation, K, and the variances On the axis , 

corresponding to the correlated direction a r e  increased by an amount 

proportional to the correlation K. 

dimensional correlation equals the variance of the process, equation 

(5. l o ) ,  all off axis variances a r e  zero and large variances a r e  

F o r  the case where the one 

experienced on the correlation axis. For  constant correlation, K, 

in  both directions the variance behaves as 

and when the correlation equals the variance of the f(x,y) process, 

the resulting frequency sample variance is 

(5.12) 



70 

These results indicate that a process f(x,y) with constant 

correlation equal to i ts  variance in all directions is a deterministic 

constant with a Fourier transform equal to the Kronecker delta 

function a t  the origin. 

Another limiting condition that is of interest  is the case  of 

total statistical independence of all samples in the process f(x,y). 

In this case  the variance of F(u,v) becomes 

(5.13) 

This result  indicates that for a statistically independent process all 

frequencies have identical variances. Under the condition of statis-  

tical independence of the samples, f(x,y), the variance is sufficient 

to determine the distribution of frequency components. A Central 

Limit Theorem is valid assuming the f(x,y) samples are bounded and 

identically distributed, and in the limit the distribution of the func- 

tion F(u,v) becomes normal [ 20, pg, 2941. 

It is of interest  to determine how closely to the normal the 

distributions of frequency samples behave for correlation in  the 

process f(x,y). Work has been dcrne in this a r ea  in the one dimen- 

sional case  from the point of view of a strong mixing criterion for  an 

e r g d i c  process [ 21, pg. 1911, Also, Diananda and others have 

proven theorems for limiting normal distributions for  the r-dependent 
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one dimensional random process [ 22 1. Expansion to the two 

dimensional case i s  probable, but is not undertaken here.  

an experimental approximation is introduced a t  this point. 

assumed that the samples in the frequency domain take on a normal 

density for the sake of implementation of a quantizing scheme. 

assumption, while not rigorously derived, is experimentally justified 

Instead, 

I t  is 

This 

as the future work wi l l  verify. 

Under the normal approximation, the second moment calcula- 

tions a r e  sufficient to completely define the distribution a t  each 

frequency sample. 

a normal density varying only as a function of spectral  frequency 

Consequently, all frequency samples w i l l  have 

through the varying second moments. Therefore the probability 

density of the amplitudes of the Fourier  samples a r e  

and FR and F a r e  obtained from the equation 
I 

F(u, v) = F (u, v) t i FI(u, v) (5.15) R 

I t  is useful to express F(u,v) in terms of its magnitude and phase. 

F(u,v) = M(u,v) exp { i e  (u,v)] (5.16) 

where 
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M(u,v) = /- (5.17) 

and 

(5.18) 

From the definition of F (u, v) and F (u,v), these random variables 

are orthogonal for  a given u and v. ALSO, from the assumption of a 

R I 

normal distribution on both F (u, v) and F (u,v), the two random R I 

variables are independent for a given u and v. In other words, the 

processes F (u,v) and F (u,v) as a function of u and v a r e  not inde- 
R I 

pendent processes, but when sampled a t  the Game frequency, are 

1 
independent . 
Rayleigh distributed with parameter u 

Consequently, the random variable M(u, v) becomes 

2 
(u,v) 

FN 

(5.19) 

where U(z) is the unit step function in 2;. Because of the independence 

of F (u, v) and F (u,v) a t  a given u and V, the random variable 0(u,v) R I 
is equally likely to take on any value from zero to 2n and consequent- 

ly is uniformly distributed and independent of frequency. 

O < e < 2 l l  

otherwise 

1 - -  
Pe(z) = { 7 (5.20) 

Davenport and Root, c 23, pg. 1613. 1 
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5.2 Experimental Implementation 

The analytic results of the previous section of this chapter 

indicate that a likely quantization rule is a quantizing technique for  

each Fourier domain sample, which varies as a function of spatial 

frequency. The individual quantizer for each frequency sample is 

found to behave a s  the power spectral  density of the original process 

a t  that given frequency, Therefore i t  i s  necessary to know the 

covariance function or i ts  transform before quantizing can take place. 

To  this end an experimental determination of the covariance function 

w a s  made of the footpad m’oon scene test  image displayed ear l ie r  in 

chapter 2. The results suggest that the correlation of a given picture 

sample is zero for samples greater than fifteen elements away, and 

the shape of the covariance approaches that of a two dimensional 

Gaussian surface. Therefore, as a n  approximation, a suitable 

power spectral  density is a two dimensional Gaussian function. Such 

a function has been incorporated a s  the variance plane for the experi- 

mental quantization rules presented in this chapter. 

A comment should be inserted here  concerning the experimen- 

tal use of the Gaussian density. From one dimensional l inear 

prediction theory it is known that a Gaussian spectrum implies a 

determinis tic process as defined by the Paley- Wiener theorem [ 241 . 
The fact  that some of the experimental results of this report a r e  
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based on a two dimensional Gaussian s p e c t r m  does not mean that 

the process f(x,y) is deterministic. The results only provide empir- 

ical  evidence that the Gaussian spectrum is an  appropriate experi- 

mental approximation to the f (x, y) process, 

The actual quantization rule developed for experimental irngle- 

mentation is not derived to minimize mean square quantization error .  . 

Instead the quantization law is one in which the quantum levels a r e  

se t  according to an  equally likely probability of being in any given 

quantum interval. 

quantization noise sense, i t  does affer a uniform distribution of 

quantum levels to any type of transmission channel noise. 

While such a rule is not optimum in the m i n b u m  

Since the original spatial scene was  coded to 64 levels, 64 

levels w i l l  be the number of quantum intervals sorzght in the frequency 

domain quantization in order to attain an equal nurnber of code words 

necessary for transmission in each domain. Figure 5- 1 illustrates 

three quantization rules, 

zation l a w  constant over the entire frequency plane. 

The f i r s t  is a simple s i x  bit linear quanti- 

This method, 

presented for comparative purposes, approximates the rule that 

would be used if the original scene were totally statistically indepen- 

dent. It linearly quantizes each sample point to one of 64 levels 

determined by the maximum value in the frequency plane. 

second rule quantizes each of the real  and imaginary canponents of 

The 
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each frequency sample to one of 64 levels according to a Gaussian 

distribution with a variance which changes as the two dimensional 

Gaussian spectrum over the frequency domain. The third scheme 

quantizes the magnitude of each frequency sample to one of 64 levels 

according to a Rayleigh distribution whose variance also changes as 

the same power spectrum over the frequency domain. The phase is 

uniformly quantized to one of 64 levels independent of spatial f re -  

quency. Figure 5-2 contains the results of the above three rules. 

Figure 5-2a is the reconstructed moon scene using the full computer 

register length of 18 bits, 

scene using the linear quantization scheme, and obviously, is not 

acceptable. 

5-2c and 5-2d, respectively, show considerable improvement over 

the linear approach. Little, if any, visible quantization noise is 

evident as compared to the 18 bit reconstruction. 

Figure 5-2b is the reconstructed moon 

The Gaussian and Rayleigh techniques displayed in figures 

In order not to res t r ic t  the experimental results to one particu- 

lar scene, two additional images have been quantized using the 

Gaussian density distribution for the frequency samples. 

results appear in figure 5-3 and also behave properly under the 

quantization opera tion. 

These 
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a) No Quantization b) 64 Level Linear Quantization 

c) 64 Level Gaussian Real and 
Imaginary Quantization 

d) 64 Level Rayleigh Magnitude and 
Line a r  Phase Quantization. 

Figure 5-2 .  - -  Examples of Quantization f o r  Footpad 
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a) No Quantization b) 6 Bit Quantization 

c) No Quantization d) 6 Bit Quantization 

Figure 5-3 64 Level Gaussian Quantization 
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5.3 Invariance to o Plane 

One result  of this chapter has  been the derivation of a quanti- 

zation scheme based upon a variance which is a function of frequency. 

Therefore, a variance or  o plane is used to define the variance of 

the density function from which quantum levels a r e  determined a t  

every spatial frequency. The variance or (J plane behaves as the 

spectrum of the covariance function of the original process, f(x,y). 

The problem of determining the variance plane on some distance 

spacecraft could far outweigh the advantages of Fourier coding, and, 

from a practical point of view could prejudice all Fourier coding 

techniques. 

which wi l l  allow for  a n  approximation to the variance plane with good 

It is the purpose of this section to develop an  approach 

experimental reconstructions. 

a r e  used as an introduction to the experimental results that follow. 

The following heuristic arguments 

F i r s t ,  the (J plane must be symmetric about the origin due to 

the nature of the Fourier transform of the covariance function. 

Second, there is no a priori  knowledge to indicate that a particular 

direction wi l l  have a higher degree of correlation than any other 

direction. 

Finally, there is no a priori  knowledge to indicate that a particular 

Consequently, the o plane should be circularly symmetric. 

periodicity wi l l  be prevelant in the unknown image. 

o plane should be monotonically increasing. 

Therefore, the 

A likely candidate for 
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the 0 plane is a two dimensional Gaussian surface with u and v 

variances equal. Such a surface indicates that the original covari- 

ance function w a s  a lso Gaussian, a not too unnatural assumption. 

The remaining question is how rapidly should the Gaussiqn curve 

fall off in the (J plane? This question is related to the degree of 

correlation of the original scene. The (J plane has been reduced to 

degrees of free- one degree of freedum rather than the original - 
2 
N2 

dom. 

An experiment has been performed in order to demonstrate a 

certain tolerance for various degrees of different Gaussian surfaces. 

sin au  sin av plane has been vsed with little notice- 

able effect on the retransformations. Three different Gaussian 

surfaces were used in the experiment. The Gaussian surface vari- 

ances ranged over a factor of four in value. 

reconstructions, a matched filter correlation measurement w a s  

In addition to visual 

made with respect to the intermediate Gaussian curve. 

and correlative results a r e  displayed in figure 5-4. 

consideration, all four images appear relatively unchanged. 

The visual 

From a visual, 

The 

matched filter indicates that the least degree of correlation exists 

in the non-Gaussian surface. However, the visual results do indicate 

a fairly large degree of tolerance fo r  the 0 plane, especially consi- 

dering the large range of variance used for the Gaussian surfaces. 
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a) Gaussian Surface, Intermediate 
Variance, Matched Filter Correla- 
tion : 1. 000 

b) Gaussian Surface, Small Variance, 
Matched Filter Correlation : 0. 3675 

c )  Gaussian Surface, Large Variance, 
Matched Filter Correlation : 0.4278 

d) 1 1 (sin au) /au] g (sin av) /av]  I 
Surface, Matched Filter Correla- 
tion : 0. 2022 

Figure 5-4. - - Gaussian Quantization with Different Variance Planes 
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Results such a s  these a r e  encouraging in the respect that the exact 

spectrum is not necessary for quality reconstructions. 



CHAFTER 6 

NOISE EFFECTS 

A major concern of communication system designers is the 

susceptibility of data to noise interference. I t  is important, then, 

to study the effects of noise on the Fourier coding communication 

system. Two particular noise patterns of interest  a r e  spatially 

correlated noise and spatially random noise. 

noise m i l l  usually result  from some peculiar characterist ic of an 

Spatially correlated 

image sensing device such a s  a vidicon mesh pattern or geometric 

distortion due to poor deflection amplifiers. 

often occurs in digital communication systems a s  channel noise. 

Spatially random noise 

6.1 Binary Symmetric Channel Noise 

In most  digital communication systems the code alphabet 

consists of two symbols which a r e  subject to perturbations in the 

channel, and these perturbations introduce random noise a t  the 

receiver. The binary symmetric channel is used as the noise model 

in the study of channel effects on Fourier coding. 

representation of such a communication channel is given in figure 

The classical 

6-1 where the probability of receiving an incorrect symbol is p 

83  
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Figure 6-1. --Model of a Binary Symmetric Channel 
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i r regardless  of which symbol is transmitted. 

An intuitive justification for transmitting the frequency rather 

than the spatial domain of an image is the fact  that channel noise 

introduced in the Fourier  transform of an image tends to be distri-  

buted evenly over the entire reconstructed image. 

noise manifests itself as a low frequency effect in reconstruction. 

Since the eye is m o r e  sensitive to the high frequency "salt and 

pepper" effect of channel noise in the spatial domain, the same 

channel noise power in the frequency domain is somewhat less  offen- 

sive. 

through a channel with probability of e r r o r  of 0. 1. 

t he  Fourier  transform of the output of the same channel whose input 

w a s  the Fourier  transform of the mid-grey scene. 

the same amount of noise energy but that energy is distributed quite 

differently. 

advantage of the inherent high frequency or "salt and pepper" noise 

immunity that Fourier  domain coding offers. A s  a f i r s t  step in this 

direction a requirement wi l l  be made that each quantum level occur 

equally likely as any other quantum level. This quantization c r i te r -  

ion w i l l  guarantee that each code word is equally likely to occur and 

w i l l  avoid any unexpected noise biasing, since the binary symmetric 

channel effects each code bit, and therefore each code word, 

Consequently the 

Figure 6-2a shows a mid-grey scene after having passed 

Figure 6-2b is 

Both scenes have 

A quantizing and coding method can be developed to take 
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a)  BSC Noise in Spatial Domain b) Fourier  Transform of BSC Noise 
in  Fourier  Domain 

-1 Figure 6-2.  - -  Binary Symmetric Channel Noise with E r r o r  Rate p = 10 
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independently of all others. 

in the quantization rule employed at  the end of chapter 5. A s  w a s  

mentioned ear l ier ,  such a scheme is sub-optimum with respect to 

quantization e r r o r ,  but is better suited for channel noise immunity. 

Such a quantization requirement results 

Figure 6-3 contains a ser ies  of experimental results using the 

Rayleigh quantization law with variance changing as a function of 

frequency according to the power spectrum of the original scene. 

The footpad and i ts  quantized Fourier  transform a r e  passed through 

the same binary symmetric channel for two different e r r o r  probabili- 

ties. These pictures a r e  presented to demonstrate a further compli- 

cation that must be avoided. The frequency induced noise energy is 

concentrated in low frequency variations which a r e  so  large that the 

high frequency information is 10s t due to normalization in recons truc- 

tion. This can be explained by the fact that the absolute, a s  opposed 

to the relative value of a bit e r r o r  is much la rger  in the regions 

where the power spectrum is large. 

trum of the footpad, the larger  values occur a t  the lower frequencies, 

and thus the lower frequency noise e r r o r s  have a greater  effect on 

the reconstructed image in the spatial domain. 

tion of this effect is afforded by figure 6-4. 

In the case of the power spec- 

Further  demonstra- 

Figures 6-4a and 6-4b 

-1 
a r e  the footpad noise scenes with e r r o r  ra tes  of 10 

the space and frequency domain respectively. 

result  of the same e r r o r  ra te  channel noise in the frequency domain 

introduced in 

Figure 6-4c is the 
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- 3  
a) 10 E r r o r  Rate in the Spatial 

Domain 
b) E r r o r  Rate in the Fourier 

Domain 

c) lo-' E r r o r  Rate in the Spatial 
Domain 

d) 10-1 E r r o r  Rate in the Fourier 
Domain 

Figure 6-3. - -  Binary Symmetric Channel Noise in Spatial 
and Fourier Domain Transmission 
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a )  10-1 E r r o r  Rate in the Spatial 
Domain 

b) 10-1 E r r o r  Rate in the Fourier  
Domain 

c) Reconstruction with the 800 Lowest 
Spatial Frequencies Er ro r l e s s  

d) Reconstruction with the 6500 
Lowest Spatial Frequencies 
Er ro r l e s s  

Figure 6-4. - -  Effect of Low Frequency E r r o r s  
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but with 20 X40 or  800 of the lowest spatial frequencies transmitted 

e r r o r  free. 

now concentrated in the higher frequencies. 

lowest 6500 spatial frequencies transmitted e r r o r  free. 

I t  is evident f rom figure 6-4c that the noise energy is 

Figure 6-4d has the 

A s  a result  of the statistical regularity of samples in the fre-  

quency domain, a much smaller  amount of e r r o r  correction in this 

domain wi l l  yield a far better noise immunity than the same amount 

of e r r o r  correction in the spatial domain. The nature of the quanti- 

zation law is such that e r r o r s  in certain positions of the frequency 

domain a r e  much m o r e  bothersome than in other positions due to the 

large statistical variance of samples a t  these frequencies. 

fore, i t  is natural to develop an  e r r o r  correction rule to cor rec t  for  

e r r o r s  only in these large variance regions. 

to e r r o r  cor rec t  code those frequency samples which correspond to 

positions in the frequency domain where the power spectrum of the 

covariance function indicates a high probability of large sample 

values. This technique alone requires an increase in bandwidth to 

facilitate the e r r o r  correction. However, i t  has been found that the 

small increase in bandwidth in the Fourier domain will result  in far 

better reconstructions than the same increase in the spatial domain. 

I t  is important to emphasize that the coding technique used for 

There- 

One such rule would be 

the Fourier  domain should be tailored to a particular channel capa- 

- 3  
city. If the channel noise has a n  e r r o r  ra te  l e s s  than about 10 , 
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then it appears that no e r r o r  correction is necessary as in figure 

6-3b. 

often becomes more  desirable to transmit as many e r r o r  corrected 

samples as possible a t  the expense of not transmitting the entire 

frequency plane, 

ily e r ror less ,  data could be received until norm31 picture bandwidth 

However, under the circumstances of a high e r r o r  rate,  i t  

- 
Using such a system, corrected, but not necessar- 

has been reached, a t  which time transmission is terminated, In 

order to implement such a scheme, an  e r r o r  correcting code must 

be selected. 

quency domain w i l l  be omitted due to the increased e r r o r  correcting 

capability of the code. The main point of this discussion is to illus- 

The code selected wi l l  depend on how much of the f r e -  

trate the variety of coding implementations possible for different 

channel conditions. 

A specific example of the potential of the Fourier coding tech- 

nique is presented below. A high e r r o r  ra te  channel is  assumed 

with rate p = 4 X 10 

Consequently, the Fourier coding technique requires the exact same 

-2 
, The equal bandwidth cri terion is assumed. 

bandwidth as conventional spatial domain transrnissign systems. 

The e r r o r  correcting code must have a t  least  six information bits. 

Two such codes which become candidates for implementation are a 

f i r s t  order Reed Muller code and a Bose Chaudhuri-Hocquenghem 

code, (BCH) [ 25; 26, pg. 1621.  The particular Reed Muller code 

of interest  is a (32 ,6 )  code in which the minimum distance between 
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code words is sixteen, and therefore, the code is capable of correct-  

ing a total of seven er rors .  

also capable of correcting seven er rors .  

The BCH code is a (31,6) code and is 

The BCH code wi l l  be used 

in  the following discussion. Utilizing an e r r o r  correcting code capa- 

ble of seven e r r o r  corrections does not mean that the six information 

bits wi l l  be received over the noisy channef error free. 

” 

Since each 

code word length has been increased to thirty-one bits, eight or more  

e r r o r s  per code word cannot be guaranteed to be corrected. The 

probability of 

by the partial 

having eight or  more  e r r o r s  in the BCH code is given 

s u m  of the binomial distribution 

(6.1) 
31-i 31 

i=8 
P(8 or  more  e r r o r s )  = C ( 3:)pi(l-p) 

where p is the binary symmetry channel e r r o r  rate. 

ity is an  upper bound for the incorrect reception of a code word since 

the possibility of cor rec t  reception for greater  than seven e r r o r s  

st i l l  exists but is unknown. 

This probabil- 

For  the specific channel e r r o r  rate of 

-2  4 ~ 1 0  

probability of e r r o r  no greater than 2.26 X 10 

, the e r r o r  corrected data samples wi l l  be received with 

- 5  
[ 27) .  Figure 6-5 

displays the results of this e r r o r  correcting procedure. 

and 6-5c a r e  two test  scenes whose spatial domains a r e  transmitted 

through the binary symmetric channel with the above e r r o r  rate. 

Figure 6-5b and 6-5d a r e  the e r r o r  correction Fourier domain 

Figure 6-5a 
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- 2  

Domain 
a) 4 x 10 E r r o r  Rate in the Spatial b) E r r o r Cor r e cte d Ret ransf o rmation 

-2 

Domain 
c) 4 x 10 E r r o r  Rate in the Spatial d) E r r o r  Corrected Retransformation 

Figure 6-5. - -  Equal Bandwidth E r r o r  Correction Technique 
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transmission results for each of the test scenes. While there is a 

loss  of high frequency information in figures 6-5b and 6-5d, there is 

a marked improvement over the spatial coding in figures 6-5a and 

6-5c. 

derable advantage for very noisy communication channels. 

I t  is evident that this particular type of coding offers a consi- 

6.2 Correlated Noise 

Removal of certain noise patterns is possible in the frequency 

domain. 

has a high degree of correlation. 

noise wi l l  be any unwanted characteristic of a n  image that has a 

Such a technique is especially successful when the noise 

In this section spatially correlated 

reasonably w e l l  defined power spectrum. The source of the cor re-  

lated noise is unimportant and need not be investigated. Correlated 

noise removal techniques can be implemented by multiplication of a 

filter transfer function with the Fourier transform of an  image, or 

by the energy subtraction of certain portions of the frequency domain 

of an image. 

Multiplication filtering can take the simple form of frequency 

band filtering or the more  complicated form of matched filtering as 

discussed ear l ier  in chapter 4. 

low pass filter in which there is more  filtering power in one dimen- 

sion than in the other is afforded by figure 6-6. 

An example of a smoothly varying 

Examples of very 
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Figure 6-6. - - Nonlinear Multiplicative Fil ter 
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simple low and high pass filtering a r e  given by figure 6-7. 

pass  filter used w a s  a 40 X40 square aperture  binary mask which 

The low 

had the value 1 in the square and zero outside of the square. The 
- 

inverse of this filter w a s  used as the high pass  filter. Figure 6-7a 

is the original scene and contains the block le t ters  "USC". Figure 

6-7b is the logarithm of the magnitude of the Fourier  transform of 

"USC". 

versions of the original, respectively. 

- 

Figures 6-7c and 6-7d a re  the low pass  and high pass filtered 

Often a low pass  filter can be used successfully for noise 

removal in the presence of a tremendous amount of high frequency 

noise. Figure 6-8 demonstrates this capability. Figure 6-8a is a 

two level "USC" block letter scene which has an  incorrect element 

on the average of one every fourth sample. The noise tends to be of 

a high frequency nature with no particular dimensional correlation 

visible. 

figure 6-8b. 

noise removal in grey-scale scenes. 

A simple 40  X40 l o w  pass filter wi l l  yield the results of 

This technique can a l so  be used for high frequency 

Figure 6-8c is the result  of 

transmitting the Surveyor box scene through a channel with e r r o r  

-1 
rate  p = 10 

6-8d where a circular  filter of radius 51 frequency samples has been 

used. 

otherwise obscured by the high frequency noise. 

. The low pass  fi l tering of this scene results in figure 

This technique allows viewing of low frequency information 

A s  was mentioned ear l ier ,  certain noise patterns can be 
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a) Block Letters "USC" b) Logarithm of the Magnitude of 
the Fourier Transform 

c) Low Pass  Filtered Reconstruction d) High Pass  Filtered Reconstruction 
(40 x 40 Binary Mask Filter) (Inverse 40 x 40 Binary Mask 

Filter) 

Figure 6-7. - -  Fourier Domain Filtering 
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a) Two Level "USC" with E r r o r  Rate b) Low P a s s  Fil tered Reconstruction 
1 (40 x 40 Binary Mask Filter) 

P = 4  

-1 
c) 10 E r r o r  Rate in the Spatial d) Low Pass Filtered Reconstructiol 

Domain (Circular Binary Mask Fi l ter ,  
Radius = 51) 

Figure 6-8. - -  High Frequency Noise Filtering 
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removed by an  energy subtraction in the frequency a reas  of large 

noise content. This procedure might be used when it is desirable 

to remove noise of a given spectral  frequency, but not remove image 

information a t  that frequency. The energy subtraction noise removal 

method is only recommended when very exact noise power spectral  

density information is available, because, subtraction of too much 

energy or energy a t  the wrong frequency w i l l  result  in total image 

degradation corresponding to application of the superposition princi- 

ple. 

afforded by Figure 6-9. 

highly correlated one dimensional noise pattern that is quite periodic. 

An example in which the subtaction technique is possible is 

Figure 6-9a shows the footpad scene with a 

Because the period and direction can be accurately measured, a 

noise spectrum can be properly determined. 

in this part  of the frequency domain wi l l  then result  in figure 6-9b. 

Similar results can be obtained for  two dimensionally correlated 

noise a s  seen from figures 6-9c and 6-9d respectively. 

A subtraction of energy 

6 . 3  Conclusions 

The experimental results of this chapter indicate that process- 

ing in the Fourier  domain offers advantages for noise improvement 

techniques. Specifically, for high channel e r r o r  ra tes ,  transmission 

of only e r r o r  corrected data permits far superior reconstructions 
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a) One Dimensionally Correlated Noise b) Noise Removed 
(Cosine 
Cycles /Picture Element) 

a(x-t-y)] Where a = .125 

c) Two Dimensionally Correlate6 Noise d) Noise Removed 
( x , y  Periodicity = 32 Picture Elements) 

Figure 6-9. - -  Spatially Correlated Noise Removal 
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than spatial domain coding. The frequencies that a r e  e r r o r  correc-  

ted a r e  a function of the power spectrum of the image, but the power 

spectrum can easily be approximated by a sirnple Gaugsian 

s and need not be known a priori. For channel e r r o r  rates low enough, 

no e r r o r  correction is necessary and the noise power is a v  

over the entire retransformed plane. 
T 

In the a rea  of correlated noise removal several  examples a r e  

presented to show the ease with which spatial filtering can be imple- 

mented. The results of these spatial filtering techniques a r e  limited 

only by the lack of knowledge of the noise power spectrum. 

advantage of computer implementation of two dimensional spatial 

filtering lies in the large dynamic range of the filter domain and 

The 

thus a large variety of filtering possibilities. 



CHAPTER 7 

BANDWIDTH REDUCTION 

In the investigations of the previous chapters analytic and 
d 

experimental results have pointed to the advantage of using the 

statis tical regularity of frequency samples in the Fourier domain. 6 

This has held true in developing quantization and noise immunity 

coding methods. I t  seems logical, then, that a similar technique 

might be pursued in the study of bandwidth reduction in the frequency 

domain. 

be obtained in the Fourier domain with far less picture degradation 

than in the spatial domain for the same bandwidth reduction factor. 

These results a r e  valid for severe bandwidth limited communication 

It wi l l  be shown that very large bandwidth reductions can 

systems. More pleasing results can also be obtained with much 

smaller bandwidth reduction factors. Four different techniques a r e  

investigated below. The first technique simply indicates the quality 

of reconstructions obtainable from binary mask low pass fi l ters.  A 

scanning algorithm method is described in which a sequential image 

construction communication system is developed. A section of the 

chapter is devoted to applying spatial domain bandwidth reduction 

techniques to the Fourier domain; and finally, coding and quantization 

102 
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techniques a r e  discussed with respect to bandwidth reductions. 

7.1 Fixed Aperture Bandwidth Reductions 

Probably the most obvious method of saving bandwidth in a 
B 

Fourier communication system is  to not transmit the high frequency 

"a 
information. This is equivalent to low pass filtering an image, and 

wil l  result  in blurred retransformations. 

referred to as a fixed aperture method. 

compacted into few low frequencies, and therefore a large percentage 

of total image energy can be transmitted with a surprisingly small 

bandwidth requirement. In addition, the large bandwidth reductions 

obtainable by the fixed aperture  method a r e  superior to the same 

reductions applied only in the spatial domain. 

The technique wi l l  be 

Most of the image energy is 

The experimental results presented in this section have been 

obtained with circular apertures centered about the origin of the 

Fourier domain. Using such apertures ,  energy distributions as a 

function of radial spatial frequency have been taken for different 

test scenes. These results a r e  presented in figure 7-1 in which the 

energy within a given radial frequency is plotted, The radial f r e -  

quency axis has been converted to a percentage of total bandwidth 

axis for display purposes. 

large percentage of image energy is concentrated in a very small  

portion of the bandwidth in the frequency domain. 

I t  is evident from this figure that a very 

I t  is this fact that 



104 

W 
0 

al 
M 
(d E 
W 

I 

r( 

I 
t- 
al 
k 
1 M 
G 



105 

allows the development of noise immunity techniques a s  in chapter 6 

and the aperture bandwidth reduction techniques in this chapter. 

Figures 7-2 and 7-3  present results for two test scenes. The band- 

width reductions and amount of image energy transmitted are listed 

in the captions. Figure 7-4 presents two different bandwidth reduc- 
P 

tion factors for both the Fourier and spatial domains. A sample and 

hold technique has been used to implement the reductions in the 

spatial domains. 

7.2 Scanning Algorithms 

The particular bandwidth reduction technique which is incor- 

porated in the Fourier domain depends entirely on the degree of 

resolution which is desired in the reconstruction after transmission. 

I t  should be emphasized that any modification to the Fourier domain, 

even if  only a t  a single spectral  point, affects the entire reconstruc- 

tion. 

to obtain for any significant amount of bandwidth reduction. 

one promising technique for Fourier domain bandwidth reduction is 

afforded when a severe bandwidth reduction is necessary due to large 

For  this reason high resolution reconstructions a r e  difficult 

However, 

communication distances, or possibly, due to a desire  to initially 

investigate a scene before full bandwidth transmission is decided 

upon. Under such conditions certain scanning algorithms can be 

developed s o  that a very high percentage of the energy of a picture 
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a) Bandwidth Reduction 64:l 
98. 3% Image Energy Transmitted 

b) Bandwidth Reduction 32:l 
99.5% Image Energy Transmitted 

c) Bandwidth Reduction 16:1 
99.8% Image Energy Transmitted 

d) Bandwidth Reduction 4:l 
99.9% Image Energy Transmitted 

Figure 7-2. - - Bandwidth Reductions with Circular Apertures 
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a) Bandwidth Reduction 64:l 
9270 Image Energy Transmitted 

b) Bandwidth Reduction 32:l 
9570 Image Energy Transmitted 

c) Bandwidth Reduction 16:l d) Bandwidth Reduction 4:l 
98.370 Image Energy Transmitted 99.870 Image Energy Transmitted 

Figure 7-3. - -  Bandwidth Reductions with Circular Apertures 
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a) Fourier Domain 36:l b) Spatial Domain 36:l 

c) Fourier Domain 4:l d) Spatial Domain 4:l 

Figure 7-4. - -  Equivalent Spatial and Fourier Domain 
Bandwidth Reductions 
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can be transmitted with very few data points. 

is a n  order of transmission of spectral  points which usually would 

follow the peaks in the power spectrum if known. As an example, 

figure 7-5  contains two Fourier  domain scenes and suggested scan- 

ning algorithms in each case. 

tend to follow the high energy frequency samples as would be indicated 

by the power spectrum of the process. Since the energy in the spatial 

and Fourier  domains is identical, a transmission technique can be 

devised s o  that a cumulative record of energy transmitted is retained. 

In this way transmission can be terminated a t  any desired percentage 

of total energy available. If the second algorithm presented in figure 

7-5  is used, the results a r e  the same a s  those obtained in section 7 .1  

for  fixed circular  apertures.  

evident that recognizable reconstructions a re  obtained for even the 

A scanning algorithm 

Notice that the scanning algorithms 

Referring to figures 7-2 and 7-3 i t  is 

largest  bandwidth reductions. 

'enough to base a decision as to the advantage of transmitting more  of 

the spectral  points for better reconstructions or saving bandwidth 

and focusing the camera  on a new scene. 

sequentially built up to obtain better and better resolution until the 

total Fourier domain has been transmitted or  until bandwidth con- 

The reconstructions would be valid 

In this way a scene can be 

straints a r e  exceeded. 

of this type of construction of transmitted scenes. 

Figures 7-2 and 7-3 demonstrate the results 
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a)  Logarithm of the Magnitude of the 
Fourier  Transform of "USC" 

b) Rectangular Scanning Algorithm 

c) Logarithm of the Magnitude of the d) Circular Scanning Algorithm 
Fourier Transform of the Footpad 

Figure 7- 5. - -  Scanning Algorithms 
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7 . 3  Spatial Techniques in the Fourier Domain 

A tremendous amount of research effort has been expended in 

developing bandwidth reduction techniques in the spatial domain 

[ 1 , 2 8 - 3 2  1. Therefore, it seems practical to attempt to apply these 

techniques to the frequency domain. A s  an  example, edge detection 

is useful in spatial domain bandwidth reduction techniques. An edge 

is defined as a change in the value of a picture sample, and the edges 

and their positions a r e  coded and transmitted in this bandwidth 

reduction method. 

the Fourier  domain a r e  immediately obvious when defining frequency 

edges due to the very large dynamic ranges of this domain. 

same dynamic range, coupled with changing sign, causes a severe 

problem in any type of predictive coding for real and imaginary 

frequency components, because knowledge of one sample does not 

significantly reduce the entropy concerning adjacent samples. 

suggestion is that the magnitude function, M(u,v), discussed in 

chapter 5, might be well enough behaved to apply predictive or  inter- 

polative sampling. A sample and hold scheme has been implemented 

on the magnitude of each Fourier sample while retaining complete 

phase information. 

indicate poor retransformation. 

behaved than either the real  or  imaginary components of each 

The difficulties of adapting such a technique to 

This 

One 

The results a r e  displayed in figure 7-6a and 

While the magnitude is better 
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a) Sample and Hold on Magnitude Only b) Checkerboard Sampling 

c) Random Sampling d) Random Sampling of High Frequenc 

Figure 7-6. - -  Spatial Domain Techniques Applied to the Fourier  
Domain for a Bandwidth Reduction of 2:l 
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frequency sample, its variance is changing with the covariance power 

spectrum as a function of frequency, and thus does not lend itself to 

sample and hold techniques. 

Most of the deterministic sampling techniques used in spatial 
t. 

bandwidth reduction schemes a r e  undesirable for use in the Fourier 

domain. A s  a n  example of a deterministic sampling technique, 

consider sampling in a checkerboard fashion over the two dimensional 

Fourier plane. 

sented a s  

% 

The sampling function, S(u,v), can then be repre- 

utv 1 t (-1) 
2 

S(U, v) = (7.1) 

and takes on the value ze ro  or one depending on whether u tv  is odd or 

even respectively. 

sented as the product of F(u ,v)  and S(u,v) and the retransformed 

image, g(x, y), becomes 

The sampled frequency plane can then be repre-  

Since (-1) can be equated to exp (in), equation (7.2) can be further 

reduced to 

N-1 N-1 
t 6 C C F(u,v)  exp 

u, v=o 
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w h e r e  f(x, y) is the two dimensional Fourier transform of F(u, v). 

The result  of the second term within the square brackets becomes a 

Fourier  transformation with a phase shift, thereby introducing a 

space shift in the spatial domain. 

(7.4) 

A vivid example of this type of sampling is shown in figure 7-6b. 

Close examination of this figure reveals that equation (7.4) has been 

experimentally verified. 

In general any sampling function, S(u,v) can be expressed as 

1 4- W(u,v) 
2 S(u,v) = (7. 5) 

where W ( u , v )  takes on the value A1 as some function of frequencies u 

and v. Consequently, the retransformation of the sampled frequency 

plan e wi l l  be 

where @ implies a two dimensional spatial convolution. 

f(x,y) @ w(x,y) is taken to be noise, then the average noise power 

wi l l  be a function of the original signal, f(x,y), and wi l l  be fairly 

strong. 

If the te rm 

Thus any determinis tic sampling procedure wi l l  affect the 

. 
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convolution noise in a deterministic manner. A nondeterministic 

sampling procedure that might be envisioned is one in which w(u,v) 

becomes a random variable over the frequency plane. 

variable is highly uncorrelated, then the noise power is spread out 

over the reconstructed image. 

If this random 

L 

Such a technique w a s  implemented by 

developing a random binary plane where 50% of the frequency compo- 

nents were sampled a t  random positions. 

is displayed in figure 7-6c. 

overpowering footpad section of the image ac ross  the plane is clearly 

The reconstructed image 

Notice that the effect of convolving the 

visible. This can also be interpreted as the fact that the e r r o r  intro- 

duced in the low frequency portion of the Fourier domain, by not 

sampling there, induces an absolute amplitude noise that saturates 

the higher frequency information. The next step in the random Sam- 

pling procedure is to random sample only the high frequencies. 

has been done with considerable improvement over figure 7-6c and 

This 

is presented in figure 7-6d. Although the improvement is great  over 

figure 7-6c, the image reconstruction is still  poor for the small  

amount of bandwidth gained. 

7.4 Coding 

In chapter 5 a quantization process w a s  developed which allowed 

the entire frequency domain to be coded in six bits. The retransfor- 

mations, figures 5-2 and 5-3, were comparable, ignoring truncation 
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e r r o r ,  to the original image; and therefore, equal bandwidth require- 

ments were achieved for the spatial and Fourier domains. A band- 

width reduction is possible by reducing the number of quantization 

levels or by reducing the number of code words for certain frequen- 

cies. Combinations of these two techniques have been implemented, 

and a r e  presented below. 

An example of the f i r s t  technique, shown in figure 7-7b, is to 

quantize the entire plane into 32 instead of 64 levels according to a 

frequency varying power spectrum. This technique obviously results 

in greater quantization noise. About 16.7% of the bandwidth has been 

saved. Notice that there appears to be diagonal low frequency modu- 

lation from the lower left corner to the upper right corner caused by 

the quantization e r ror .  

The second technique to be implemented is one that codes c e r -  

tain frequency samples to just four bits even though they have been 

quantized to 64 levels. This means that any code word greater than 

seven is changed to code word seven and the proper sign bit affixed. 

The frequencies for which this coding scheme is used a r e  those 

spectral  points which a r e  indicated to have small absolute values by 

the power spectrum plane. 

the quantization noise but does introduce a coding e r r o r  a t  certain 

frequencies. The results of this technique a r e  indicated in figure 

7-7c. 

Such a coding technique does not add to 

The bandwidth saved is 23.5%. Notice that this technique has 
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a) 64 Level Gaussian Quantization. 
No Bandwidth Reduction 

b) 32 Level Gaussian Quantization. 
16. 7’70 Bandwidth Reduction 

c) 64 Level Gaussian Quantization 
and 4 Bit Coding of High F r e -  
quencie s . 23. 5 ’70 Bandwidth 
Reduction 

d)32 Level Gaussian Quantization and 
4 Bit Coding of High Frequencies. 
357’0 Bandwidth Reduction. 

Figure 7 - 7 .  - - Quantizing and Coding Bandwidth Reduction Techniques 
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introduced a n  undulating effect in the left center of the figure. 

Combination of the above two techniques results in a bandwidth 

reduction of 3 5% when a 32  level quantization scheme is combined 

with four bit coding a t  low amplitude frequencies. Results of this 

procedure a r e  displayed in figure 7-7d. Figure 7-7a is a 64 level 

scene without bandwidth reduction transmission presented for com- 

parison. 

level quantizing and the horizontal undulation due to four bit coding 

F rom figure 7-7d both the diagonal modulation due to 32 

are visible. Consequently, these techniques tend to give erroneous 

reconstruction over the entire plane, and probably a r e  not valuable 

enough as a trade off for bandwidth saved. 

7. 5 Conclusions 

A bandwidth reduction technique has been presented which, 

coupled with scanning procedures, combines to form a novel and 

promising method of image construction vcith very Large bandwidth 

reduction factors. 

where bandwidth i s  a significant factor and transmission should not 

be wasted on redundant images. 

ity of transmitting the full bandwidth of a scene can be made after 

the transmission of a small portion (on the order of one sixtieth to 

one thirtieth) of the frequencies of the scene. 

This technique could have spacecraft applications 

Decisions concerning the desirabil- 

Applications of spatial bandwidth reduction techniques in the 
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Fourier domain have met  with little success. The dynamic range in  

the Fourier  domain results in impractical edge detection coding 

methods. The dynamic range coupled with rapidly changing phases, 

4. and thus signs of real and imaginary frequency components, causes 

most  types of predictive and interpolative rules to fail, especially 

for any significant amount of bandwidth reduction. Sampling tech- 

niques fail because of the convolution effect in retransformation. 

Uncorrelated random sampling procedures result  in large noise 

components spread over the entire space domain. 

The newly developed Fourier domain coding l a w s  offer little 

more  promise for bandwidth reduction. 

noise become large when any amount of bandwidth is reduced. 

in part ,  can be attributed to the fact that any frequency alteration 

affects the whole spatial domain. While the reconstructions obtained 

from the bandwidth coding and quantizing schemes produce recogniz- 

able and fairly pleasing results,  the amount of bandwidth saved is 

not enough to justify the development of the necessary frequency 

coding techniques. 

Both coding and quantization 

This, 



CHAPTER 8 

SUMMARY 

This chapter summarizes the results of research  reported in 

the previous chapters. In addition, a brief discussion on the philos- 

ophy of computational techniques for maximum accuracy and display 

purposes i s  presented. Finally, suggested future research stemming 

from the results reported here  is  briefly discussed. 

8.1 Computation and Display 

In chapter 2 it w a s  implied that single precision integer arith- 

metic w a s  satisfactory for use in the Fourier algorithm if all norm- 

alization procedures were delayed until absolutely necessary. 

same philosophy has been maintained in processing the planes of 

data in all other computations besides Fourier  transforming. An 

interesting dichotomy a r i s e s  from using this normalization approach 

when making comparisons with displayed results. 

happened, that certain retransformed planes of data a r e  a closer 

match to the original before normalization than after. 

words, a n  original picture might be restricted to six bit quantization, 

whereas, the retransformed image could very likely contain levels 

The 

I t  can, and has 

In other 
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greater  than 6 3 .  Unfortunately, all picture elements greater  than 

63 w i l l  be displayed on the output monitor modulo 64, a very dis- 

tressing circumstance to the viewer. 

images must  be normalized to 63 before viewing. But such a norm- 

alization procedure can introduce a greater discrepency between the 

original and post-normalized image than between the original and 

pre-normalized image, However, the ultimate receiver of this data 

processing is the human eye, and consequently numerical accuritcy 

wi l l  often be sacrified for  visual results,  

Therefore, all  processed 

L 

Another topic of discussion is that of reconstructing images 

after a Fourier transformation back to the spatial domain. As indi- 

cated in chapter 3 ,  there exist two means of reconstructing an image 

from a half plane of frequency data. 

frequency plane symmetric conjugate, thereby guaranteeing a rea l  

One approach i s  to make the 

image retransformation. 

with half the Fourier plane being zero, and then extract the real  field 

of data from the complex plane of retransformed data. 

The second approach is to retransform 

This is the 

Hilbert transform approach. 

has been found that the former symmetric conjugate plane approach 

results in slightly superior image reconstructions for the following 

reasons. 

before retransformation, the output plane is guaranteed to be real. 

However, due to the finite computations involved, certain e r r o r s ,  

From a n  experimental point of view,  i t  

Since the frequency plane is made symmetric conjugate 
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some of which wi l l  be in the imaginary fields of data, w i l l  accumu- 

late. The numerical values that appear in the imaginary data fields 

a r e  several  orders  of magnitude smaller than the real  field data and 

do not affect the real  data significantly. In the Hilbert retransforma- 
J 

tion approach, both real  and imaginary data fields a r e  of the same 

order of magnitude; the former contains the desired image and the 

latter contains the Hilbert transform of the image. Because of the 

similar orders of magnitudes, interaction between the fields of data 

wi l l  be more  significant, and the imaginary data  field w i l l  tend to 

have a greater influence on the real field in the Hilbert case than in 

the symmetric conjugate case. F o r  this reason all of the experi- 

mental results presented have been obtained using the symmetric 

conjugate method. 

8.2 Conclusions of Research 

Chapter 1 indicated that the object of research w a s  to investi- 

gate the feasibility of developing a Fourier image coding technique 

that might have advantages over spatial image coding for certain 

communications applications. 

that Fourier coding is feasible, and offers significant advantages for 

communicating images over certain types of channels. 

four general conclusions to this research that should be emphasized. 

The results of this research indicate 

There a r e  

The f i r s t  successful result is the fact that it has been 
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experimentally possible to verify that equal bandwidths a r e  possible 

for the Fourier and spatial domains. 

density functions for Fourier domain samples provide for the devel- 

The derivation of probability 

- oprnent of a frequency variable quantization scheme. Using such a 

scheme, a variance, or  CT plane, concept w a s  introduced which pro- 

duces a different density function, and therefore quantization law 

for each frequency sample. The results of this investigation allow 

for the experimental development of equal bandwidth requirements 

in both spatial and Fourier domains. 

The second result of the research which deserves further 

mention is the matched filter image evaluation technique presented 

in chapter 4. While research in this a rea  needs further investiga- 

tion, i t  should be mentioned that fairly encouraging results have been 

obtained. 

filter evaluation procedure correlates well with the psychophysical 

viewing properties of the human observer. In addition, the matched 

The experiment in chapter 4 reveals that the matched 

fi l ter  evaluation tool is used in chapter 5 to discern subtle differ- 

ences, undetectable to the eye, in using different variance planes in 

the quantization scheme presented in that chapter. While the matched 

filter has been used with some success, i t  is not to be interpreted as 

the answer to all  automatic image evaluation procedures. Since the 

fi l ter  does not differentiate between relevant and irrelevant images, 

i t  should not be used as an evaluation tool without the parallel use of 
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the human obs e rve r . 
The third result  of interest is the noise immunity work pre- 

sented in chapter 6 .  In general, the Fourier domain offers greater 

immunity in transmission through a noisy binary symmetric channel - 
than does the spatial domain. For  very low e r r o r  rates the Fourier 

domain is superior because the small  amount of noise energy intro- 

duced in the frequency domain is averaged over the entire spatial 

domain in retransformation, and thus becomes less offensive to the 

eye than the equivalent "salt and pepper" noise introduced directly 

into the spatial domain. 

desirable to introduce an e r r o r  correcting code system. 

tional bandwidth required for parity bits in a code word is recovered 

by transmitting a comparable number of fewer data points. 

advantageous in the frequency domain since the fewer data points 

transmitted sti l l  contain over 90% of the energy in the complete 

image. 

formed image which is incomplete in i ts  higher frequencies. 

ever,  the e r r o r  reduced 90% energy retransformed image is far 

superior to the spatially transmitted e r r o r  abundant 100% energy 

image, as verified by the results of chapter 6 .  

For  extremely high e r r o r  rates it becomes 

The addi- 

This is 

The result  of this technique is an e r r o r  reduced retrans- 

How- 

The final resul t  obtained from this research is the method of 

bandwidth reduction and sequential image construction presented in 

chapter 7. I t  w a s  pointed out that mpst spatial damain techniques 
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a r e  undesirable when applied to the Fourier domain. In fact the 

only promising Fourier domain bandwidth reduction technique seems 

to be the expedient of not transmitting certain data points. The 

advantage of this technique is that a large percentage of image 

energy can be transmitted with a large bandwidth reduction, thereby 

allowing retransformed images to be more  complete than a n  image 

from a n  equivalent bandwidth reduction on the spatial domain alone. 

This capability of transmitting a high percentage of energy with a 

small percentage of data points allows the development of an  efficient 

sequential image construction technique which becomes valuable over 

communication channels where high energy and wide bandwidth a r e  

expensive commodities. In particular, if a spacecraft is to transmit 

images from a distant planet to earth, an  energy constraint seems 

likely. With the sequential image construction technique a few data 

points w i l l  give the viewer a good idea of the image on the distant 

planet. 

can be transmitted and a better image constructed. 

can be continued until the entire bandwidth of the image is reached or  

until the viewer is satisfied with the results. 

If the image looks interesting, more frequency data points 

This technique 

If the first image is 

uninteresting, the spacecraft camera can be commanded to a new 

scene and a second image can be constructed. This sequential image 

construction technique wi l l  allow a feedback communication sys tem 
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to be developed in which the operator on ear th  has close control on 

the most  efficient way to conserve power and bandwidth in space- 

craf ts  on distant planets in video communication. 

The four highlighted results discussed above were primarily 

made possible through the use of the high speed Fourier  algorithm 

presented in chapter 2. 

numerous two dimensional Fourier transformations that otherwise 

would have been impossible to obtain. 

version of the Cooley-Tukey approach often cited in the computer 

l i terature [ 71. I t  is presented in detail because of the reduction in 

number of complex multiplications over complex addition which is a 

large factor in some computer systems. 

The speed of the algorithm has allowed 

The algorithm is a modified 

8 . 3  Future Research 

I t  is anticipated that the results of the research presented here  

wi l l  be the forerunner to further research and development in the 

a r e a s  of Fourier coding. 

dimensional data transmission, but could apply to more  conventional 

one dimensional sys tems o r  more  unconventional three dimensional 

Future work need not be restricted to two 

sys tems such as a r e  envisioned in future holographic communication 

techniques. Areas  in which immediate effort should be expended 

include the development of high speed two dimensional algorithms, 

and special purpose Fourier transforming computers. In addition, 
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frame differencing techniques, where only new d a b  in temporally 

adjacent frames of television informakion i s  transmitted, 

investigated making use of the Fourier domain. 

~ 



APPENDIX 

The appendix contains the experimental information necessary 

to develop a laboratory facility capable of reproducing the results 

reported in this dissertation. Detail is not inc’luded but brief des- 

criptions of both hardware and software systems a r e  provided. 

A. 1 Hardware Equipment 

The basic piece of hardware equipment used in the experimental 

phase of this research is a general purpose digital computer. The 

computer along with the other hardware systems used is displayed 

in block diagram form in figure A-1 .  The computer consists of a 

central  processor and a nearly autonomous buffer. 

cycle time is three microseconds with a memory storage capacity 

of 8192 eighteen bit computer words. 

all have eighteen bit word lengths and consequently single precision 

The memory 

There are six regis ters  which 

integer values a r e  bounded by f 217- l .  Since two dimensional pro- 

cessing requires a tremendous amount of bulk storage, s ix  magnetic 

tape units a r e  incorporated in the computer peripheral equipment. 

In addition, other standard digital 1/0 equipment necessary fo r  

program preparation is available. This equipment includes an  

input-output typewriter, high speed card reader,  line printer, and 

128 
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card  punch. 

cessing sys tem designed and built by Thompson-Ramo- Wooldridge 

The above equipment comprises an information pro- 

Inc. and designated the TRW 530. All specifications for  equipment 

and operations a r e  included in their l i terature pertaining to this 

system. In addition to the above standard computer facility, a digital 

to two dimensional optical converter is necessary. 

has been built and has been used for all photographic work. 

digital to analog converters a r e  driven by the computer to provide 

analog X and Y sweep and Z axis video voltages to an eight by ten 

Such a device 

Three 

inch cathode ray tube monitor. The picture to be displayed is placed 

on a magnetic tape unit which is then commanded to transfer i t s  data 

to the output cathode ray  tube monitor. 

on the monitor and a time exposure taken to record the picture on 

A camera is then focussed 

photographic f i l m .  

A. 2 Two Dimensional Fourier Program 

The Fourier algorithm described in chapter 2 is for a one- 

dimensional case. For  a two-dimensional transformation the 

algorithm is simply used 2N times. A two-dimensional Fourier  

transform program has been developed to Fourier transform f(x, y) 

into F(u,v)  using the above algorithm. 

The two-dimensional Fourier transform program presented 
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here  is described with particular reference to figure A-2 depicting 

control and data flow of the program. 

and consequently requires certain operator inputs. 

The program is quite versatile 

Specifically the 

% operator defines the following three inputs. 

1) Dimensions of input (i, e., number of samples in the 

x and y direction. The number of samples N in each 

- 

n 
direction must be a power of two, N = 2 for any n) 

2)  Real or complex input (i. e., whether each sample is 

real  or complex) 

3) Normalizing constant. This decision is necessary 

in order that high frequency low amplitude information 

is not lost  due to normalization; or alternately, so 

that overflow does not occur, 

Once the operator has  specified the input format the control 

program takes over and the entire program is now automatic. 

control program generates the complex coefficient adresses ,  controls 

The 

individual program sequencing, and generates spectral  point storage 

addresses. 

accept the operator input parameters,  store and type output 

T o  perform these functions the control program must  

messages,  s e t  up the proper variables as a function of the input 

parameters and test and initialize all magnetic tapes. A subfunction 

Qf the control program is to output, under control of a test switch, 
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the Fourier  values and spectral  points a s  well as the program 

number designations. This information is typed on the line: printer 

and is only used for debugging purposes. The control program 

initiates the shifter program, the spectral  point generator, and the 

coefficient generator, The order in which each of these three pro- 

grams occurs is  immaterial as all three must be complete before 

the computation program can commence. 

- 

The shifter program takes the input function which is stored on 

magnetic tape and causes a phase shift in that information s o  that the 

Fourier transform output wi l l  be centered. This is necessary since 

the Fourier  algorithm is designed with the origin in the upper left 

corner of the input function. 

gram is implemented by changing the sign of the number in each 

position when the sum of the space coordinates, x+y, is odd. 

The phase shift introduced by this pro- 

This 

particular phase shift w i l l  cause the frequency domain function to be 

shifted to the center according to the Fourier shifting theorem. 

can be verified for  the finite Fourier case  by defining the following 

functions. Let 

This 

and le t  
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Then by the basic relations 

in (-1) = cos n = e 

X in x (-1) = e 

the relation between G ( u j v )  and F(u,v)  is found to be 

N-1N-1 2n i  
~ ( u ,  V)  = - c c f(x, y)  exp { (xutyv) t in(xty) 

x ,y=o N 

or  

(A. 3a) 

(A. 3b) - 

(A. 3c) 

(A. 3d) 

(A. 5) 

and finally 

G ( u , v )  = F 

The shifter program causes the shifted input function to be 

When this operation is completed, the written on a second tape. 

program signals the computation program. 

generator program generates the N output spectral points in a 

The spectral point 
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particular sequence. 

minimum computations in the Fourier algorithm. 

the same as would be obtained by counting up from zero to N in 

binary and interpreting each count with the significance of the binary 

representation reversed. When the spectral  point generator has 

generated N points, it signals the computation program that i t  is 

finished. 

k} for  a l l  k ranging from zero  to - -1. These coefficient exp 

coefficients a r e  stored on magnetic tape for use in the actual compu- 

It  is this particular sequence that allows for 

The sequence is 

The coefficient generator generates the exponential 

N 
2 { 

tation program. 

The computation program is the essence of the two-dimensional 

Fourier transform program. I t  begins when the shifter, spectral  

point, and coefficient programs a r e  complete. This program takes 

a one-dimensional Fourier transform of each line of the input tape 

and s tores  i t  on another tape. I t  does this by a sieve type of opera- 

tion in which the initial da@ is added together in a certain order so 

that minimum computation and storage a r e  utilized. 

program determines which operation, P N O  through PNn, is to be 

The computation 

used to calculate the value for a particular spectral  point. An 

operation, P N i  w i l l  call one or more  of three subroutines which 

perform complex addition, subtraction, and multiplication. When 

the computation program has' Fourier transformed the N lines of 

the input in one dimension, i t  passes control to the turn around 
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program, 

0 
The turn around program performs a 90 rotation on the out- 

put of the semi-transformed data. The data is called "semi- 

transformed" because i t  has been Fourier transformed in one 

dimension only. 

transformed data onto the input tape overwriting the data there since 

The turn around program places the rotated semi- 

i t  has already been used. 

second pass through the computation program. 

produces the second dimension of the Fourier transformation and 

This operation prepares the data for a 

The second pass 

places the final result  on the output tape. 

now complete, and the two-dimensional Fourier transformation pro- 

gram turns control back to the operator. 

The entire program is 

A. 3 Software Programs 

The programs used in the development of the picture process- 

ing capability demonstrated in this dissertation a r e  described below. 

They w i l l  be presented with their code names. The descriptions 

wi l l  be brief; and complete listings wi l l  not be presented as the 

listings a r e  only intelligible to those knowledgable in the TRW 530 

software Symbolic Instruction Assembly Sys tem (SIAS). 

SYSTEM: The system program is the mas ter  s e t  of instruc- 

tions under whose control all other programs a r e  called from the 

system library. The system l ibrary is a magnetic tape on which all 
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programs a r e  stored according to the three letter titles a s  presented 

in this appendix. The system program is written in machine lan- 

guage and is read into memory whenever tape unit 0 is selected 

.. f rom itsload point position. The prsgram converses with the opera- 

tor through the typewriter. 

FOI: The gne dimensional Fourier Transform program follows 
1 

the algorithm presented in chapter 2. 

language for speed of computation considerations and is contained 

in a loop such that a n  entire plane of data is one dimensionally 

Fourier transformed. 

I t  i s  written in maching 

\ 

STA: A turn around program is needed to complete the two - 
dimensional Fourier  transformation. 

dimensionally transformed result  of the qutput of FOI and rotates 

the plane 90°. 

routine that selects the correct  elements from lines of the prerotated 

plane and forms new lines of rotated information, 

This program takes the one 

The rotation is performed by a type of scanning 

- SAN: This program scans a complex plane of data to find the 

positive and negative extremes. 

to the entire plane forming a totally positive complex plane. 

I t  then adds the negative extreme 

Then 

i t  extracts the real  components of each complex sample and norrna- 

l izes these components to six bits. 

program a rea l  positive plane compatible with the cathode ray tube 

This makes the output of the 



138 

display system. 

transformed scenes for output display as i t  automatically adds the 

necessary constant bias that was lost  in not transmitting the origin 

frequency sample in the Fourier domain. 

This program is very useful for preparing doubly 

TRI: This machine language program is necessary for all 

display work. 

be read into memory and out of memory onto the monitor. 

It causes a plane of data stored on a magnetic tape to 

This pro- 

gram is used in combination with some computer hardware changes 

that allows a program instruction transfer of data to the typewriter 

to actually transfer information to the monitor. 

SM1: This program forms the square root of the magnitude of 

each complex sample of a plane and then normalizes each number to 

six bits. The output of this program is real ,  positive, and compati- 

ble with the monitor and is used in displaying frequency domain 

- 

information. 

logarithm of the magnitude of each element in the plane and is used 

for  obtaining knowledge of low amplitude information in the frequency 

domain. 

such that all values below that level a r e  renormalized to the maxi- 

mum 6 bit thereby allowing a linear output of very low amplitude 

One variation of this program w i l l  form the natural 

A second variation allows a clipping level to be selected 

information. 

S3D: This program scans a normalized real  positive plane - 
and forms an output tape that contains a three dimensional view of 
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the relative amplitudes of the original plane. 

monitor, a perspective display results. 

in the demonstration of dynamic range in chapter 3. 

When scanned onto the 

Such a mechanism w a s  used 

- SSH: This program takes half a Fourier frequency plane and - 
fa rms  a full plane with two options. 

of the new plane w i l l  be identically zero. 

transform reconstruction. 

of the new plane as the symmetric conjugate of the f i rs t  half. 

The f i r s t  is that the second half 

This allows for  Hilbert 

The second option forms the second half 

When 

this full plane is two dimensionally Fourier transformed, a real  two 

dimensional function results. 

- SGA: This program quantil;es each real and imaginary sample 

to one of an  operator determined number of quantum levels from a 

Gaussian distribution. An individual quantum scale is used for each 

frequency sample and is determined by a variance function a t  the 

given frequency. The program reads in the frequency plane to be 

quantized on one tape and the variance plane on a second tape, A 

third tape is used as the output or quantized frequency domain, Two 

additional options are available in the program and allow for coding 

as well as quantizing and decoding. 

i f  the frequency plane were to be subjected to s o m e  type of channel 

The coding option would be used 

disturbance and the decoding option would ac t  as a receiving station. 

- SRQ: This program operates very similarly to the Gaussian 
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quantization program, SGA, except the square root of the magnitude 

of each complex frequency sample is  formed and is the quantized to 

one of a pre-determined number of quantum levels according to a 

Rayleigh distribution whose variance again changes as a function of 

frequency. A l s o  the phase of each complex frequency sample is 

J 

formed and quantized to one of a pre-determined number of quantum 

levels. 

output with the options of coding and decoding a s  desired. 

This program a lso  has two tapes as inputs and one a s  an 

- SFQ: This program implements a linear quantization rule. I t  

quantizes each real  and imaginary sample linearly between plus and 

minus the most  extreme values of the plane. 

SCH: This program introduces a bit e r r o r  from a unifQrm - 
-6  

e r r o r  probability density a t  any e r r o r  ra te  from p = 10 

Such a program allows for the random injection of e r r o r s  a t  a given 

ra te  of input data exactly as a binary symmetric communication 

channel. 

channel requires a random number generator to be called and com- 

pared with an  e r r o r  threshold. 

to p = 1. 

The program is lengthy because each bit that enters the 

- SFI: This program simple adds, subtracts, or multiplies two 

planes together. 

cations. 

certain frequencies and when multiplied by the Fourier transform 

of a scene the output becomes a filtered frequency domain ready for  

I t  is useful for filtering and noise removal appli- 

In particular a plane can be formed which  emphasizes 
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retransformation. 

SLB: In the course of two dimensional picture processing i t  - 
becomes imperative that intermediate results be stored for la ter  

reference. 

The l ibrary stores consecutive pictures serially line by line. An 

- A picture l ibrary has been developed for this purpose. 

index is provided for a title and dimensions of planar data stQred. 

The program has three options, the first of which wi l l  allow the 

operator to initiate a tape to begin a new library. A second option 

allows a picture to be stored by title and dimension a t  any time on 

the library. 

from the l ibrary by title and dimension. 

The third option allows the operator to read any picture 

SJP: A more  efficient l ibrary procedure has been developed 

Rather than storing a 

- 
for  storing pictures normalized to six bits. 

computer word of 18 bits for each picture sample, three picture 

samples a r e  stored per computer word. This increases the storage 

efficiency threefold, but of course cannot be used to s tore  nurnbers 

out of the 0-63 range. 

SPG: Often a simple plane of data is desired for computation 

This program allows a plane to be formed using a simple 

- 
purposes. 

coded typewriter input. 

a r e  256, 512, 1024 and samples must  range between 0-999. 

Restrictions on the resolution of the plane 

- SGE: A much more  generalized picture generating technique 

is afforded by this program. Data is read into the computer on cards  
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and any range of positive or negative samples is possible. 

SHS: A program that is often used for trouble shooting as well - 
as data gathering is the histogram program. This program reads a 

tape into memory and makes a histogram of the different numerical 

values on that tape. I t  w i l l  histogram a variable dimensional plane 

of data and can process as many as 1000 different levels. The out- 

put of the program is a printer listing of the level and frequency of 

occurrence of each level. In addition a normalized graph is plotted 

for  graphic representation. 

SER: A program had been written to make statistical measure-  

Two tapes a r e  used for inputs 

- 
ments on the difference of two planes. 

to the program and the absolute value of the difference is placed on 

a third tape. The maximum difference is printed by the typewriter 

as a r e  both mean square and variance e r r o r s  per element. A histo- 

gram can be made of the output tape thereby forming a distribution 

of absolute value e r rors .  

0 SRO: This program rotaes a plane 180 , and is necessary - 
when the SER program is used for e r r o r  measurement. 

rotation counter balances the two 90 

The 180° 

0 
rotations inherent in the posi- 

tive Fourier  transform kernel. Two tape units a r e  used for this 

program, the output tape being obtained by reading the input tape 

backwards . 
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SSS: This program multiplies a spatial domain scene by - 
(-l)xty in order that the frequency domain be properly centered on 

the monitor display. 

s+ SGU: This program calculates a normalized two dimensional - 
Gaussian plane and writes i t  on a tape. 

pendent variance allowing stretching or shrinking of either dimension. 

Each dimension has an inde- 
- 

The results of the program have been used as mutliplicative fi l ters 

and power spectral  densities. 

SEX: This program extracts either the real  of imaginary field - 
of data f rom a cQmplex plane of data. 

quadrature filter retransformation techniques back to the spatial 

domain. 

I t  is used in evaluating Hilbert 

SEN: This program is designed to measure the tQtal energy in - 
a rea l  o r  complex plane of data. 

transmitted in bandwidth reduction schemes and in scanning algor- 

ithms. 

It can be used in measuring energy 

The input to the program is a single tape and the output is on 

the tyepwriter. 

SMA: The 

filter c orrelator 

- digital implementation of 

is  in this program. Two 

the complex matched 

tapes, a mas ter  and 

processed frequency plane, a r e  inputs. The program measures  the 

correlation of the processed plane with respect to the master  plane. 

The four significant figure output is on the typewriter. 
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- CPY: This is a utility program that copies one tape onto 

another irrespective of the data format. 

- SCI: This program forms a circular binary filter of variable 

radius which has the capability of being used in bandwidth reduction 

and low pass o r  high pass filtering schemes. 

“1 

SBG: This program measures the energy of a Fourier domain - - 
plane a s  a function of radial distance away from the origin. 

output is graphical a s  well as numerical and is presented on the line 

The 

printer . 
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